Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.20.1.081

Anti-Cancer Effect of IN-2001 in T47D Human Breast Cancer  

Joung, Ki-Eun (College of Pharmacy, Ewha Womans University)
Min, Kyung-Nan (College of Pharmacy, Ewha Womans University)
Kim, Dae-Kee (College of Pharmacy, Ewha Womans University)
Sheen, Yhun-Yhong (College of Pharmacy, Ewha Womans University)
Publication Information
Biomolecules & Therapeutics / v.20, no.1, 2012 , pp. 81-88 More about this Journal
Abstract
Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. Histone deacetylase (HDAC) inhibitors are emerging as an exciting new class of potential anti-cancer agents. In recent years, a number of structurally diverse HDAC inhibitors have been identifi ed and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. However, the underlying molecular mechanisms remain unclear. This study aimed at investigating the anti-tumor activity of various HDAC inhibitors, IN-2001, using T47D human breast cancer cells. Moreover, the possible mechanism by which HDAC inhibitors exhibit anti-tumor activity was also explored. In estrogen receptor positive T47D cells, IN-2001, HDAC inhibitor showed anti-proliferative effects in dose-and time-dependent manner. In T47D human breast cancer cells showed anti-tumor activity of IN-2001 and the growth inhibitory effects of IN-2001 were related to the cell cycle arrest and induction of apoptosis. Flow cytometry studies revealed that IN-2001 showed accumulation of cells at $G_2$/M phase. At the same time, IN-2001 treatment time-dependently increased sub-$G_1$ population, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with induction of cdk inhibitor expression. In T47D cells, IN-2001 as well as other HDAC inhibitors treatment significantly increased $p21^{WAF1}$ and $p27^{KIP1}$ expression. In addition, thymidylate synthase, an essential enzyme for DNA replication and repair, was down-regulated by IN-2001 and other HDAC inhibitors in the T47D human breast cancer cells. In summary, IN-2001 with a higher potency than other HDAC inhibitors induced growth inhibition, cell cycle arrest, and eventual apoptosis in human breast cancer possibly through modulation of cell cycle and apoptosis regulatory proteins, such as cdk inhibitors, cyclins, and thymidylate synthase.
Keywords
IN-2001; T47D; Histone deacetylase;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
  • Reference
1 Gartel, A. L. and Tyner, A. L. (1998) The growth-regulatory role of p21 (WAF1/CIP1). Prog. Mol. Subcell. Biol. 20, 43-71.   DOI
2 Glaser, K. B., Staver, M. J., Waring, J. F., Stender, J., Ulrich, R. G. and Davidsen, S. K. (2003) Gene expression profi ling of multiple histone deacetylase (HDAC) inhibitors: defi ning a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol. Cancer Ther. 2, 151-163.   DOI
3 Gui, C. Y., Ngo, L., Xu, W. S., Richon, V. M. and Marks, P. A. (2004) Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc. Natl. Acad. Sci. USA. 101, 1241-1246.   DOI   ScienceOn
4 Hortobagyi, G. N. (1998) Treatment of breast cancer. N. Engl. J. Med. 339, 974-984.   DOI   ScienceOn
5 Johnstone, R. W. and Licht, J. D. (2003) Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell. 4, 13-18.   DOI   ScienceOn
6 Joung, K. E., Min, K. N., An, J. Y., Kim, D. K., Kong, G. and Sheen, Y. Y. (2006) Potent in vivo anti-breast cancer activity of IN-2001, a novel inhibitor of histone deacetylase, in MMTV/c-Neu mice. Cancer Res. 66, 5394-5402.   DOI   ScienceOn
7 Kim, M. S., Blake, M., Baek, J. H., Kohlhagen, G., Pommier, Y. and Carrier, F. (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 63, 7291-8300.
8 Kim, Y. B., Lee, K. H., Sugita, K., Yoshida, M. and Horinouchi, S. (1999) Oxamfl atin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene. 18, 2461-2470.   DOI   ScienceOn
9 Komatsu, Y., Tomizaki, K. Y., Tsukamoto, M., Kato, T., Nishino, N., Sato, S., Yamori, T., Tsuruo, T., Furumai R,, Yoshida, M., Horinouchi, S. and Hayashi, H. (2001) Cyclic hydroxamic-acid-containing peptide 31, a potent synthetic histone deacetylase inhibitor with antitumor activity. Cancer Res. 61, 4459-4466.
10 Marks, P., Rifkind, R. A., Richon, V. M., Breslow, R., Miller, T. and Kelly, W. K. (2011) Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer. 1, 194-202.
11 Mariadason, J. M., Corner, G. A. and Augenlicht, L. H. (2000) Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res. 60, 4561-4572.
12 Nakano, K., Mizuno, T., Sowa, Y., Orita, T., Yoshino, T., Okuyama, Y., Fujita, T., Ohtani-Fujita, N, Matsukawa, Y., Tokino, T., Yamagishi, H., Oka, T., Nomura, H. and Sakai, T. (1997) Butyrate activates the WAF1/Cip1 gene promoter through Sp1 sites in a p53-negative human colon cancer cell line. J. Biol. Chem. 272, 22199-22206.   DOI
13 Papeleu, P., Vanhaecke, T., Elaut, G., Vinken, M., Henkens, T., Snykers, S. and Rogiers, V. (2005) Differential effects of histone deacetylase inhibitors in tumor and normal cells-what is the toxicological relevance? Crit. Rev. Toxicol. 35, 363-378.   DOI   ScienceOn
14 Richon, V. M., Sandhoff, T. W., Rifkind, R. A. and Marks, P. A. (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA. 97, 10014-10019.   DOI   ScienceOn
15 Saito, A., Yamashita, T., Mariko, Y., Nosaka, Y., Tsuchiya, K., Ando, T., Suzuki, T., Tsuruo, T. and Nakanishi, O. (1999) A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. USA. 96, 4592-4597.   DOI   ScienceOn
16 Sambucetti, L. C., Fischer, D. D., Zabludoff, S., Kwon, P. O., Chamberlin, H., Trogani, N., Xu, H. and Cohen, D. (1999) Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specifi c chromatin acetylation and antiproliferative effects. J. Biol. Chem. 274, 34940-34947.   DOI   ScienceOn
17 Villar-Garea, A. and Esteller, M. (2004) Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int. J. Cancer 112, 171-178.   DOI   ScienceOn
18 Sowa, Y., Orita, T., Minamikawa, S., Nakano, K., Mizuno, T., Nomura, H. and Sakai, T. (1997) Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem. Biophys. Res. Commun. 241, 142-150.   DOI   ScienceOn
19 Suzuki, T., Ando, T., Tsuchiya, K., Fukazawa, N., Saito, A., Mariko, Y., Yamashita, T. and Nakanishi, O. (1999) Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J. Med. Chem. 42, 3001-3003.   DOI   ScienceOn
20 Van Lint, C., Emiliani, S. and Verdin, E. (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 5, 245-253.
21 Vrana, J. A., Decker, R. H., Johnson, C. R., Wang, Z. , Jarvis, W. D., Richon, V. M., Ehinger, M., Fisher, P. B. and Grant, S. (1999) Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene. 18, 7016-7025.   DOI   ScienceOn
22 Wade, P. A. (2001) Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum. Mol. Genet. 10, 693-698.   DOI
23 Wittich, S., Scherf, H., Xie, C., Brosch, G., Loidl, P., Gerhäuser, C. and Jung, M. (2002) Structure-activity relationships on phenylalaninecontaining inhibitors of histone deacetylase: in vitro enzyme inhibition, induction of differentiation, and inhibition of proliferation in Friend leukemic cells. J. Med. Chem. 45, 3296-3309.   DOI   ScienceOn
24 Yang, X. J. (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic. Acids. Res. 32, 959-976.   DOI
25 Blobel, G. A. (2000) CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood. 95, 745-755.
26 Zhou, Q., Melkoumian, Z. K., Lucktong, A., Moniwa, M., Davie, J. R. and Strobl, J. S. (2000) Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1. J. Biol. Chem. 275, 35256-352563.   DOI
27 Archer, S. Y., Meng, S., Shei, A. and Hodin, R. A. (1998) p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc. Natl. Acad. Sci. USA. 95, 6791-6796.   DOI   ScienceOn
28 Banwell, C. M., Singh, R., Stewart, P. M., Uskokovic, M. R. and Campbell, M. J. (2003) Antiproliferative signalling by 1,25(OH)2D3 in prostate and breast cancer is suppressed by a mechanism involving histone deacetylation. Recent Results Cancer Res. 164, 83-98.   DOI
29 Bereshchenko, O. R., Gu, W. and Dalla-Favera, R. (2002) Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet. 32, 606-613.   DOI   ScienceOn
30 Biswas, S., Criswell, T. L., Wang, S. E. and Arteaga, C. L. (2006) Inhibition of transforming growth factor-beta signaling in human cancer: targeting a tumor suppressor network as a therapeutic strategy. Clin. Cancer Res. 12, 4142-4146.   DOI   ScienceOn
31 Brown, R. and Strathdee, G. (2002) Epigenomics and epigenetic therapy of cancer. Trends Mol. Med. 8 (4 Suppl), S43-48.   DOI   ScienceOn
32 Bulavin, D. V., Phillips, C., Nannenga, B., Timofeev, O., Donehower, L. A., Anderson, C. W., Appella, E. and Fornace, A. J. Jr. (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat. Genet. 36, 343-350.   DOI   ScienceOn
33 Butler, L. M., Agus, D. B., Scher, H. I., Higgins, B., Rose, A., Cordon- Cardo, C., Thaler, H. T., Rifkind, R. A., Marks, P. A. and Richon, V. M. (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 60, 5165-5170.
34 Carron, J. A., Fraser, W. D. and Gallagher, J. A. (1997) PTHrP and the PTH/PTHrP receptor are co-expressed in human breast and colon tumours. Br. J. Cancer. 76, 1095-1098.   DOI   ScienceOn
35 Chan, H. M., Krstic-Demonacos, M., Smith, L., Demonacos, C. and La Thangue, N. B. (2001) Acetylation control of the retinoblastoma tumour-suppressor protein. Nat. Cell Biol. 3, 667-674.   DOI   ScienceOn
36 Drummond, D. C., Noble, C. O., Kirpotin, D. B., Guo, Z., Scott, G. K. and Benz, C. C. (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu. Rev. Pharmacol. Toxicol. 45, 495-528.   DOI   ScienceOn
37 Furumai, R., Komatsu, Y., Nishino, N., Khochbin, S., Yoshida, M. and Horinouchi, S. (2001) Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA. 98, 87-92.   DOI   ScienceOn