• 제목/요약/키워드: Epigenetic

검색결과 439건 처리시간 0.032초

Epigenetic characterization of the PBEF and TIMP-2 genes in the developing placentae of normal mice

  • Kim, Hong-Rye;Han, Rong-Xun;Diao, Yun-Fei;Park, Chang-Sik;Jin, Dong-Il
    • BMB Reports
    • /
    • 제44권8호
    • /
    • pp.535-540
    • /
    • 2011
  • Reprogramming errors, which appear frequently in cloned animals, are reflected by aberrant gene expression. We previously reported the aberrant expression of TIMP-2 and PBEF in cloned placenta and differential expression of PBEF genes during pregnancy. To examine the epigenetic modifications that regulate dynamic gene expression in developing placentae, we herein analyzed the mRNA and protein expression levels of PBEF and TIMP-2 in the placentae of normal mice during pregnancy and then examined potential correlations with epigenetic modifications. DNA methylation pattern analysis revealed no difference, but ChIP assays using antibodies against H3-K9/K14 and H4-K5 histone acetylation revealed that the H3-K9/K14 acetylation levels, but not the H4-K5 acetylation levels, of the TIMP-2 and PBEF loci were significantly correlated with their gene expression levels during placentation in normal mice. These results suggest that epigenetic changes may regulate gene expression level in the developing placentae of normal mice and that inappropriate epigenetic reprogramming might be one cause of the abnormal placentae seen in cloned animals.

후성 유전학적 리프로그래밍과 클로닝 (Epigenetic Reprogramming and Cloning)

  • 한용만;강용국;구덕본;이경광
    • 한국발생생물학회지:발생과생식
    • /
    • 제7권2호
    • /
    • pp.61-68
    • /
    • 2003
  • 포유동물의 초기 발생과정 중 접합체가 전능성이나 다능성을 가지기 위해서는 전반적인 DNA 메틸화를 포함하는 후성 유전학적 리프로그래밍의 복잡한 과정을 거쳐야만 한다. 본 연구팀에서는 공여핵의 후성 유전학적 리프로그래밍 과정을 조사하기 위하여 소 복제수정란에서 메틸화 양상을 분석하였다. 복제수정란의 비정상적인 메틸화 양상이 다양한 반복염기서열에서 관찰되었지만 single-copy유전자들의 염기서열은 정상적인 메틸화 양상을 보여주었다. 전반적으로 복제수정란의 전반적인 메틸화 상태는 정상수정란과 완전히 다른 양상을 보여주었다. 또한 복제 배반포의 영양외배엽세포에서 특이적으로 높은 메틸화 수준은 현 복제동물에서 빈번히 나타나는 불완전한 태반형성에 작용할 수 있을 것이다. 결론적으로 복제수정란의 비정상적 발생은 공여핵의 불완전한 후성 유전학적 리프로그래밍에 기인할 수 있다는 사실을 제시하게 되었다. 이러한 공여핵의 후성 유전학적 과정의 이해는 복제수정란의 비정상적 발생을 보다 분명히 밝힐 수 있을 것이다.

  • PDF

Epigenetics와 정신장애 (Epigenetics and Psychiatric Disorders)

  • 오대영;양병환;이유상
    • 생물정신의학
    • /
    • 제15권4호
    • /
    • pp.243-253
    • /
    • 2008
  • In the post-genomic era, the mechanisms controlling activation of genes are thought to be more important. Gene-environment interactions are crucial in both development and treatment of psychiatric disorders as they are complex genetic disorders. Epigenetics is defined as a change of gene expression that occurs without a change of DNA sequence and can be heritable by certain mechanisms. Epigenetic changes play essential roles in control of gene activation. DNA methylation, chromatin remodeling and RNAi act as key mechanisms for epigenetic modifications of genes. Here, we review the basic mechanisms of epigenetics and discuss their potential involvement of human diseases, including psychiatric disorders.

  • PDF

Zinc and Its Transporters in Epigenetics

  • Brito, Sofia;Lee, Mi-Gi;Bin, Bum-Ho;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • 제43권4호
    • /
    • pp.323-330
    • /
    • 2020
  • Epigenetic events like DNA methylation and histone modification can alter heritable phenotypes. Zinc is required for the activity of various epigenetic enzymes, such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), histone deacetylases (HDACs), and histone demethylases, which possess several zinc binding sites. Thus, the dysregulation of zinc homeostasis can lead to epigenetic alterations. Zinc homeostasis is regulated by Zinc Transporters (ZnTs), Zrt- and Irt-like proteins (ZIPs), and the zinc storage protein metallothionein (MT). Recent advances revealed that ZIPs modulate epigenetics. ZIP10 deficiency was found to result in reduced HATs, confirming its involvement in histone acetylation for rigid skin barrier formation. ZIP13 deficiency, which is associated with Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS), increases DNMT activity, leading to dysgenesis of dermis via improper gene expressions. However, the precise molecular mechanisms remain to be elucidated. Future molecular studies investigating the involvement of zinc and its transporters in epigenetics are warranted.

X-Chromosome Inactivation: A Complex Circuits regulated by Non-coding RNAs and Pluripotent Factors

  • Hwang, Jae Yeon;Lee, Chang-Kyu
    • Reproductive and Developmental Biology
    • /
    • 제41권2호
    • /
    • pp.33-40
    • /
    • 2017
  • X-chromosome inactivation is one of the most complex events observed in early embryo developments. The epigenetic changes occurred in female X-chromosome is essential to compensate dosages of X-linked genes between males and females. Because of the relevance of the epigenetic process to the normal embryo developments and stem cell studies, X-chromosome inactivation has been focused intensively for last 10 years. Initiation and regulation of the process is managed by diverse factors. Especially, proteins and non-coding RNAs encoded in X-chromosome inactivation center, and a couple of transcription factors have been reported to regulate the event. In this review, we introduce the reported factors, and how they regulate epigenetic inactivation of X-chromosomes.

Posttranslational and epigenetic regulation of the CLOCK/BMAL1 complex in the mammalian

  • Lee, Yool;Kim, Kyung-Jin
    • Animal cells and systems
    • /
    • 제16권1호
    • /
    • pp.1-10
    • /
    • 2012
  • Most living organisms synchronize their physiological and behavioral activities with the daily changes in the environment using intrinsic time-keeping systems called circadian clocks. In mammals, the key molecular features of the internal clock are transcription- and translational-based negative feedback loops, in which clock-specific transcription factors activate the periodic expression of their own repressors, thereby generating the circadian rhythms. CLOCK and BMAL1, the basic helix-loop-helix (bHLH)/PAS transcription factors, constitute the positive limb of the molecular clock oscillator. Recent investigations have shown that various levels of posttranslational regulation work in concert with CLOCK/BMAL1 in mediating circadian and cellular stimuli to control and reset the circadian rhythmicity. Here we review how the CLOCK and BMAL1 activities are regulated by intracellular distribution, posttranslational modification, and the recruitment of various epigenetic regulators in response to circadian and cellular signaling pathways.

Epigenomics는 무엇이며 식품산업에 어떻게 응용될 것인가? (What is Epigenomics and how it will be applied to the food industry?)

  • 유진영;한가은;이종훈
    • 식품과학과 산업
    • /
    • 제50권1호
    • /
    • pp.11-15
    • /
    • 2017
  • Epigenomics is a study that analyzes and quantifies various epigenetic alterations that affect gene expressions in cells from the viewpoint of collective characteristics on biological molecular pools. DNA methylation and histone modification in cells can induce the epigenetic alterations. Especially, epigenetic alterations influenced by external factors as ingested foods and other environmental factors have been examined in the whole genome regions, which provide accumulated data of altered regions or patterns of global genome, Statistical analyses of these regions or patterns enables us to correlate epigenomic changes with human diseases in the whole genome region. Finding meaningful regulators is a major concern of epigenomic research in recent years, and these results will give the food industry an important clue to future food

Differential Inheritance Modes of DNA Methylation between Euchromatic and Heterochromatic DNA Sequences in Ageing Fetal Bovine Fibroblasts

  • Y.K. Kang;D.B. Koo;Park, J.S.;Park, Y.H.;Lee, K.K.;Y.M. Han
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 춘계학술발표대회
    • /
    • pp.49-49
    • /
    • 2001
  • To elucidate overall changes in DNA methylation that occurs by inappropriate epigenetic control during ageing, we compared fetal bovine fibroblasts and their aged neomycin-resistant versions using bisulfite-PCR technology. Reduction in DNA methylation was observed in euchromatic repeats (18S-rRNA/art2) and promoter regions of sing1e-copy genes (the cytokeratin/-lactoglobulin/interleukin-13 genes). Contrastingly, a stable maintenance of DNA methylation was revealed in various heterochromatic sequences (satellite I/IIalphoid and Bov-B). The differential inheritance modes of DNA methylation was confirmed through the analysis of individual neomycin-resistant clones. These global, multi-loci analyses provide evidence on the tendency of differential epigenetic modification between genomic DNA regions during ageing.

  • PDF

Epigenetic Regulations in Mammalian Cells: Roles and Profiling Techniques

  • Uijin Kim;Dong-Sung Lee
    • Molecules and Cells
    • /
    • 제46권2호
    • /
    • pp.86-98
    • /
    • 2023
  • The genome is almost identical in all the cells of the body. However, the functions and morphologies of each cell are different, and the factors that determine them are the genes and proteins expressed in the cells. Over the past decades, studies on epigenetic information, such as DNA methylation, histone modifications, chromatin accessibility, and chromatin conformation have shown that these properties play a fundamental role in gene regulation. Furthermore, various diseases such as cancer have been found to be associated with epigenetic mechanisms. In this study, we summarized the biological properties of epigenetics and single-cell epigenomic profiling techniques, and discussed future challenges in the field of epigenetics.

히스톤 메틸화 변형을 통한 배아줄기세포의 후성 유전학적 조절 (Epigenetic Regulation by Modification of Histone Methylation in Embryonic Stem Cells)

  • 하양화;김영은;박정아;박상규;이영희
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권4호
    • /
    • pp.273-279
    • /
    • 2011
  • 후성유전학적 조절은 DNA 서열상의 변화 없이도 유전자의 기능을 변화시킬 수 있는 현상을 뜻한다. 염색체의 후성유전학적 상태는 히스톤 변형, DNA 변형 그리고 RNAi에 의한 유전자 침묵 등에 의해 조절된다. 본 총설에서는 배아줄기세포에서의 후성 유전학적 조절에 영향을 주는 요인으로서 히스톤(histone)의 메틸화에 초점을 맞추었다. 배아줄기세포에서 발현되는 유전자의 조절에는 두 가지 단백질 복합체가 관여한다. Polycomb repressive complex 2(PRC2)는 EED, EZH2, SUZ1를 주요인자로 포함하며, H3K27의 trimethylation(H3K27me3)을 증가시킴으로써 유전자의 발현을 억제한다. 이와는 대조적으로 Trithorax group(TrxG) 복합체는 주요인자로 MLL family를 포함하며, H3K4의 trimethylation(H3K4me3) 시킴으로써 유전자의 발현을 활성화한다. PRC2 및 TrxG는 다양한 보조 단백질을 포함한다. 배아줄기세포에서 후성유전학적 조절의 두드러진 특징은 H3K27me3과 H3K4me3이 동시에 나타나는 이가 상태(bivalent state)이다. PRC2와 TrxG 복합체 그리고 H3K4나 K3K27의 메틸화에 특이적으로 작용하는 탈메틸효소(demethylase)가 한데 어우러져 배아줄기세포에서 만능성 관련 유전자와 발달 관련 유전자의 발현을 조절함으로써 줄기세포의 유지 및 분화에 기여한다. 따라서 후성유전학적 조절인자들에 대한 보다 자세한 연구는 배아줄기세포를 보다 잘 이해하고 활용하는데 도움을 줄 것이다.