Browse > Article
http://dx.doi.org/10.1080/19768354.2011.603749

Posttranslational and epigenetic regulation of the CLOCK/BMAL1 complex in the mammalian  

Lee, Yool (Seoul National Universisty, School of Biological Sciences)
Kim, Kyung-Jin (Seoul National Universisty, School of Biological Sciences)
Publication Information
Animal cells and systems / v.16, no.1, 2012 , pp. 1-10 More about this Journal
Abstract
Most living organisms synchronize their physiological and behavioral activities with the daily changes in the environment using intrinsic time-keeping systems called circadian clocks. In mammals, the key molecular features of the internal clock are transcription- and translational-based negative feedback loops, in which clock-specific transcription factors activate the periodic expression of their own repressors, thereby generating the circadian rhythms. CLOCK and BMAL1, the basic helix-loop-helix (bHLH)/PAS transcription factors, constitute the positive limb of the molecular clock oscillator. Recent investigations have shown that various levels of posttranslational regulation work in concert with CLOCK/BMAL1 in mediating circadian and cellular stimuli to control and reset the circadian rhythmicity. Here we review how the CLOCK and BMAL1 activities are regulated by intracellular distribution, posttranslational modification, and the recruitment of various epigenetic regulators in response to circadian and cellular signaling pathways.
Keywords
circadian clock; post-translational modification; epigenetic regulation; BMAL1; CLOCK;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Shim HS, Kim H, Lee J, Son GH, Cho S, Oh TH, Kang SH, Seen DS, Lee KH, Kim K. 2007. Rapid activation of CLOCK by Ca2+-dependent protein kinase C mediates resetting of the mammalian circadian clock. EMBO Reports. 8:366-371.   DOI
2 Spengler ML, Kuropatwinski KK, Schumer M, Antoch MP. 2009. A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation. Cell Cycle. 8:4138-4146.   DOI
3 Stratmann M, Schibler U. 2006. Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J Biol Rhythms. 21:494-506.   DOI
4 Takahata S, Ozaki T, Mimura J, Kikuchi Y, Sogawa K, Fujii-Kuriyama Y. 2000. Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. Genes Cells. 5:739-747.   DOI
5 Tamaru T, Isojima Y, van der Horst GT, Takei K, Nagai K, Takamatsu K. 2003. Nucleocytoplasmic shuttling and phosphorylation of BMAL1 are regulated by circadian clock in cultured fibroblasts. Genes Cells. 8:973-983.   DOI
6 Tamaru T, Hirayama J, Isojima Y, Nagai K, Norioka S, Takamatsu K, Sassone-Corsi P. 2009. CK2alpha phosphorylates BMAL1 to regulate the mammalian clock. Nat Struct Mol Biol. 16:446-448.   DOI
7 Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J. 2005. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 308:1043-1045.   DOI
8 Vaissiere T, Sawan C, Herceg Z. 2008. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res. 659:40-48.   DOI
9 Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS. 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science. 264:719-725.   DOI
10 Vo N, Goodman RH. 2001. CREB-binding protein and p300 in transcriptional regulation. J Biol Chem. 276:13505-13508.   DOI
11 Wijnen H, Young MW. 2006. Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet. 40:409-48.   DOI
12 Yoshitane H, Takao T, Satomi Y, Du NH, Okano T, Fukada Y. 2009. Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription. Mol Cell Biol. 29:3675-3686.   DOI
13 Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P. 2006. Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc Natl Acad Sci USA. 103:6386-6391.   DOI
14 Zhao WN, Malinin N, Yang FC, Staknis D, Gekakis N, Maier B, Reischl S, Kramer A, Weitz CJ. 2007. CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat Cell Biol. 9:268-275.   DOI
15 Zhong S, Salomoni P, Pandolfi PP. 2000. The transcriptional role of PML and the nuclear body. Nat Cell Biol. 2:E85-90.   DOI
16 Robles MS, Boyault C, Knutti D, Padmanabhan K, Weitz CJ. 2010. Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock. Science. 327:463-466.   DOI
17 Rutter J, Reick M, Wu LC, McKnight SL. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science. 293:510-514.   DOI
18 Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone-Corsi P. 2010. Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS One. 5:e:8561.   DOI
19 Sanada K, Okano T, Fukada Y. 2002. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J Biol Chem. 277:267-271.   DOI
20 Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T. 2002. Active genes are tri-methylated at K4 of histone H3. Nature. 419:407-411.   DOI
21 Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogenesch JB. 2006. Feedback repression is required for mammalian circadian clock function. Nat Genet. 38:312-319.   DOI
22 Schibler U, Sassone-Corsi P. 2002. A web of circadian pacemakers. Cell. 111:919-922.   DOI
23 Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T. 2004. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol. 6:73-77.   DOI
24 Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM. 2000. Interacting molecular loops in the mammalian circadian clock. Science. 288:1013-1019.   DOI
25 Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS. 2000. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science. 288:483-492.   DOI
26 Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 466:627-631.   DOI
27 McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH, Walker JR, Hogenesch JB, Takahashi JS, Esser KA. 2007. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics. 31:86-95.   DOI
28 Mehra A, Baker CL, Loros JJ, Dunlap JC. 2009. Posttranslational modifications in circadian rhythms. Trends Biochem Sci. 34:483-490.   DOI
29 Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, Antoch MP, Walker JR, Esser KA, Hogenesch JB, Takahashi JS. 2007. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci USA. 104:3342-3347.   DOI
30 Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 134:329-340.   DOI
31 Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone- Corsi P. 2009. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 324:654-657.   DOI
32 Naruse Y, Oh-hashi K, Iijima N, Naruse M, Yoshioka H, Tanaka M. 2004. Circadian and light induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol. 24:6278-6287.   DOI
33 Oishi K, Miyazaki K, Kadota K, Kikuno R, Nagase T, Atsumi G, Ohkura N, Azama T, Mesaki M, Yukimasa S, Kobayashi H, Iitaka C, Umehara T, Horikoshi M, Kudo T, Shimizu Y, Yano M, Monden M, Machida K, Matsuda J, Horie S, Todo T, Ishida N. 2003. Genomewide expression analysis of mouse liver reveals CLOCKregulated circadian output genes. J Biol Chem. 278:41519-41527.   DOI
34 Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 109:307-20.   DOI
35 Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J. 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 324:651-654.   DOI
36 Reppert SM, Weaver DR. 2002. Coordination of circadian timing in mammals. Nature. 418:935-941.   DOI
37 Asher G, Schibler U. 2011. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 13:125-137.   DOI
38 Ripperger JA, Schibler U. 2006. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drivescircadian DBP transcription and chromatin transitions. Nat Genet. 38:369-374.   DOI
39 Ripperger JA, Shearman LP, Reppert SM, Schibler U. 2000. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev. 14:679-689.
40 Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, Kyriacou CP. 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol. 12:540-550.
41 Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 134:317-328.   DOI
42 Balsalobre A, Damiola F, Schibler U. 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 93:929-937.   DOI
43 Bass J, Takahashi JS. 2010. Circadian integration of metabolism and energetics. Science. 330:1349-1354.   DOI
44 Brown SA, Ripperger J, Kadener S, Fleury-Olela F, Vilbois F, Rosbash M, Schibler U. 2005. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science. 308:693-696.   DOI
45 Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA. 2000. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell. 103:1009-1017.   DOI
46 Dardente H, Fortier EE, Martineau V, Cermakian N. 2007. Cryptochromes impair phosphorylation of transcriptional activators in the clock: A general mechanism for circadian repression. Biochem J. 402:525-536.   DOI
47 Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. 2005. Circadian clock control by SUMOylation of BMAL1. Science. 309:1390-1394.   DOI
48 Cermakian N, Sassone-Corsi P. 2000. Multilevel regulation of the circadian clock. Nat Rev Mol Biol. 1:59-67.
49 Curtis AM, Seo SB, Westgate EJ, Rudic RD, Smyth EM, Chakravarti D, FitzGerald GA, McNamara P. 2004. Histone acetyltransferase-dependent chromatin remodeling and the Vascular Clock. J Biol Chem. 279:7091-7097.   DOI
50 Dibner C, Schibler U, Albrecht U. 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 72:517-549.   DOI
51 Doi M, Hirayama J, Sassone-Corsi P. 2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell. 125:497-508.   DOI
52 Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC. 2002. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol. 12:551-557.   DOI
53 Duguay D, Cermakian N. 2009. The crosstalk between physiology and circadian clock proteins. Chronobiol Int. 26:1479-1513.   DOI
54 Eckel-Mahan K, Sassone-Corsi P. 2009. Metabolism control by the circadian clock and vice versa. Nat Struct Mol Biol. 16:462-467.   DOI
55 Eide EJ, Vielhaber EL, Hinz WA, Virshup DM. 2002. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase I$\varepsilon$. J Biol Chem. 277:17248-17254.   DOI
56 Gu YZ, Hogenesch JB, Bradfield CA. 2000. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol. 40:519-556.   DOI
57 Etchegaray JP, Lee C, Wade PA, Reppert SM. 2003. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature. 421:117-182.   DOI
58 Gallego M, Virshup DM. 2007. Post-translational modifications regulate the ticking of the circadian clock. Nat Cell Biol. 8:139-148.   DOI
59 Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 280:1564-1569.   DOI
60 Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P. 2007. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature. 450:1086-1090.   DOI
61 Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray-Grant M, Perdew GH, Bradfield CA. 1997. Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem. 272:8581-8593.   DOI
62 Hogenesch JB, Gu YX, Jain S, Bradfield CA. 1998. The basic-helix-loophelix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA. 95:5474-5479.   DOI
63 Ikeda M, Nomura M. 1997. cDNA cloning and tissuespecific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun. 233:258-264.   DOI
64 Jung H, Choe Y, Kim H, Park N, Son GH, Khang I, Kim K. 2003. Involvement of CLOCK:BMAL1 heterodimer in serum-responsive mPer1 induction. Neuroreport. 14:15-19.   DOI
65 King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS. 1997. Positional cloning of the mouse circadian clock gene. Cell. 89:641-653.   DOI
66 Kalamvoki M, Roizman B. 2010. Circadian CLOCK histone acetyl transferase localizes at ND10 nuclear bodies and enables herpes simplex virus gene expression. Proc Natl Acad Sci USA. 107:17721-17726.   DOI
67 Kalkhoven E. 2004. CBP and p300: HATs for different occasions. Biochem Pharmacol. 68:1145-1155.   DOI
68 Katada S, Sassone-Corsi P. 2010. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol. 17:1414-1421.   DOI
69 Kiyohara YB, Tagao S, Tamanini F, Morita A, Sugisawa Y, Yasuda M, Yamanaka I, Ueda HR, van der Horst GT, Kondo T, Yagita K. 2006. The BMAL1 C terminus regulates the circadian transcription feedback loop. Proc Natl Acad Sci USA. 103:10074-10079.   DOI
70 Klose RJ, Zhang Y. 2007. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol. 8:307-318.   DOI
71 Kondratov RV, Antoch MP. 2007. The clock proteins, aging, and tumorigenesis. Cold Spring Harb Symp Quant Biol. 72:477-482.   DOI
72 Kondratov RV, Chernov MV, Kondratova AA, Gorbacheva VY, Gudkov AV, Antoch MP. 2003. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev. 17:1921-1932.   DOI
73 Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. 2006a. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 20:1868-1873.   DOI
74 Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. 2001. Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 107:855-867.   DOI
75 Kondratov RV, Kondratova AA, Lee C, Gorbacheva VY, Chernov MV, Antoch MP. 2006b. Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/ BMAL1 complex by CRYPTOCHROMES. Cell Cycle. 5:890-895.   DOI
76 Kouzarides T. 2002. Histone methylation in transcriptional control. Curr Opin Genet Dev. 12:198-209.   DOI
77 Kwon I, Lee J, Chang SH, Jung NC, Lee BJ, Son GH, Kim K, Lee KH. 2006. BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol Cell Biol. 26:7318-7330.   DOI
78 Lee J, Lee Y, Lee MJ, Park E, Kang SH, Chung CH, Lee KH, Kim K. 2008. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol Cell Biol. 28:6056-6065.   DOI
79 Lee Y, Lee J, Kwon I, Nakajima Y, Ohmiya Y, Son GH, Lee KH, Kim K. 2010. Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. J Cell Sci. 123:3547-3557.   DOI