• Title/Summary/Keyword: Environmental-friendly system

Search Result 781, Processing Time 0.033 seconds

Eco-friendly Control of Whiteflies by Two-Fluid Fogging System with Natural Substances in Greenhouses (이류체 포그시스템 및 천연물을 이용한 친환경적 가루이 방제)

  • Kim, Sung-Eun;Lee, Sang-Don;Lee, Moon-Haeng;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.114-119
    • /
    • 2012
  • We have conducted 4 experiments to develop the most environmental and effective use of the two-fluid fog system to prevent and exterminate whiteflies in tomato cultivation. In particular, these experiments used Vitamini tomatoes grown in stand-alone greenhouses at Buyeo Tomato Experiment Station as subjects. Each experiment utilized the fog system in a different way. The first experiment provided the control group, which was subject to the two-fluid fog system without additional humidity control. In the second experiment, the two-fluid fog system controlled the humidity level to be above 70%. The third and the fourth experiment utilized natural substances, which were 1.5 mg/L of Neem Oil and 2 mg/L of Oleic acid respectively, without additional humidity control. From the first experiment, we could observe that a simple use of the two-fluid fog system decreased the density of whiteflies in the greenhouses. This impact of the fog system on whiteflies was greater in the second experiment. By comparing the first and the second experiment, we concluded that whiteflies are more effectively prevented by maintaining a higher humidity level via the fog system's smaller water droplets that float in the air for longer time than the standard fog system in rather dry condition. In the third and the fourth experiments, the extermination level was 78% and 76.4% respectively, comparing only 53% in the first experiment without the humidity control. Therefore, using the natural substances in addition to the humidity control increases the extermination effectiveness. Considering the similar results from the 3rd and the 4th experiments, Oleic acid has a greater appeal for its lower price. Using the two-fluid fog system to both control the humidity on a daily basis and spray the substances for occasional extermination would reduce labor cost and increase production in an environmental way.

Shear Strength and Erosion Resistance Characteristics of Stabilized Green Soils (토양안정재를 혼합한 녹생토의 전단강도 및 침식저항특성)

  • Oh, Sewook;Jeon, Jinchul;Kim, Donggeun;Lee, Heonho;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.45-52
    • /
    • 2015
  • With the rising interest in the environment, more attention on ecological restoration for damaged slope surface to restore its original state has been drawn. Generally, the most useful method is vegetation based spray work. This method uses green soil including sewage sludge, sawdust, paper sludge, and weathered granite soil. However, because there are neither accurate information nor test values about green soil, green soil is often lost by environmental factors such as rainfalls and strong winds. To solve the problem of green soil, it is necessary to prepare design standards about green soil, and conduct studies to deal with green soil loss in consideration of various variables including basic material property, soil quality of slope surface, and weather. This study was conducted in the mixture of green soil and eco-friendly soil stabilizer. With green soil, basic material property test and compaction test were conducted for the analysis on the basic characteristics of green soil. In the mixture with soil stabilizer at a certain ratio, we conducted shear strength test depending on the ratio in order to analyze the maximum shear strength, cohesion and the change in internal friction angles. Furthermore, in the mixture ratio of green soil and soil stabilizer, which is the same as the ratio in the shear strength test, an inclination of slope surface was made in laboratory for the analysis on erosion and germination rate. Finally, this study evaluated the most effective and economic mixing ratio of soil stabilizer to cope with neighboring environmental factors. According to the test, the shear strength of green soil increased up to 51% rely onto the mixing ratio of and a curing period, and its cohesion and internal friction angle also gradually increases. It is judged that the mixture of soil stabilizer was effective in improving shear strength and thereby increased the stability of green soil.

Comparisons of Growth and Mortality of the tidal flat Oyster Crassostrea gigas by the Net Bag Rack Culture System in Two Districts in Western Korea (한국 서해안 2개 갯벌지역 수평망식 굴, Crassostrea gigas의 성장과 폐사 비교 연구)

  • Mo, Ki-Ho;Park, Young-Je;Jung, Ee-Yung;Kim, Young-Gil;Jeong, Choong-Hoon;Han, Kyung-Nam
    • The Korean Journal of Malacology
    • /
    • v.28 no.1
    • /
    • pp.45-54
    • /
    • 2012
  • We investigated environmental characteristics of the tidal flat oyster aquafarms to clarifyeffects of the tidal flat environmental factors on growth and mortality of the tidal flat oyster Crassostrea gigas by the Net Bag Rack Culture System in two districts in Western Korea. In this study, we have carried out the basic environmental investigation on growth of the single tidal flat, water quality and sediments, etc. in Taean and Seosan districts, Choongcheongnam-do, where the single tidal flat oyster aquaculture have been performed by the net bag rack culture system. In June 2011 when the final survey carried out at the two districts in western Korea, the mortality in Seosan district was higher than that in Tae-an district. Judging from the results of growth and mortality of the single tidal flat oysters investigated at two sites of Jinsan-ri in Taean and Chang-ri in Seosan districts, two results of Taean district showed higher growth and lower mortality than those of Seosan district. It is assumed that the proper acceptable density possible for growth of the tidal flat seeds and the secure of economics, in case of plastic cultivate net with the size of $50{\times}80cm$, are about 200 individuals. In this study, It was clarified that selection of the suitable sites, the input into the net bag of high quality oyster seeds and selective dispersion in the optimal density of the single tidal flat oyster have an effect on growth and mortality of the tidal flat oyster.

Prediction of Ground Thermal Properties from Thermal Response Test (현장 열응답 시험을 통한 지중 열물성 추정)

  • Yoon, Seok;Lee, Seung-Rae;Kim, Young-Sang;Kim, Geon-Young;Kim, Kyungsu
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.5-14
    • /
    • 2016
  • The use of geothermal energy has increased for economically and environmentally friendly utilization, and a geothermal heat pump (GSHP) system for space heating and cooling is being used widely. As ground thermal properties such as ground thermal conductivity and ground thermal diffusivity are substantial parameters in the design of geothermal heat pump system, ground thermal conductivity should be obtained from in-situ thermal response test (TRT). This paper presents an experimental study of ground thermal properties of U and 2U type ground heat exchangers (GHEs) measured by TRTs. The U and 2U type GHEs were installed in a partially saturated dredged soil deposit, and TRTs were conducted for 48 hours. A method to derive the thermal diffusivity as well as thermal conductivity was proposed from a non-linear regression analysis. In addition, remolded soil samples from different layers were collected from the field, and soil specimens were reconstructed according to the field ground condition. Then equivalent ground thermal conductivity and ground thermal diffusivity were calculated from the lab test results and they were compared with the in-situ TRT results.

A Study on the Development of Lightweight Seat Cushion Extension Module (경량형 시트 쿠션 익스텐션 모듈 개발에 관한 연구)

  • Jang, Hanseul;Choi, Seongkyu;Park, Sang-Chul;Lim, Heon-pil;Oh, Eu-Ddeum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.200-207
    • /
    • 2016
  • The automotive seat is an important component that moves in sync with the driver and is actively being developed with various new functions. The aim of this work is to develop a lightweight seat cushion extension module using a lightweight material. To this end, a structural strength analysis, vertical strength test, and durability test were conducted. In the structural analysis, the maximum value of deformation under vertical load was 4.98 mm at the front of the upper panel. The maximum stress was approximately 105 MPa, which occurred at the point of contact between the upper and lower panels of the module. The vertical strength test showed a maximum vertical deformation of 5.31 mm under a vertical load, which differed from the analysis results by approximately 6.45%. The structural safety of the product was verified by the fact that it showed no harmful deformation or damage during operation after the vertical strength test and a durability test for 20,000 cycles. Furthermore, the use of engineering plastics made it possible to reduce the weight by approximately 30% compared to existing products. The lack of damage after tests verified the passenger safety, strength, and rigidity of the product. The results are expected to be applied for improving environmental and fuel efficiency regulations and preventing accidents due to driver fatigue. The applications of this module could be expanded various types of vehicles, as well as other industries in which eco-friendly and lightweight materials are used.

Synthesis of Renewable Resource-derived Furan-based Epoxy Compounds and Their Adhesive Property (재생자원 유래 퓨란계 에폭시 화합물의 합성 및 접착 특성)

  • Lee, Jae-Soung;Lee, Sang-Hyeup;Jeong, Jaewon;Kim, Baekjin;Cho, Jin Ku;Kim, Hyun Joong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.41-49
    • /
    • 2010
  • Furan-containing epoxide monomers (8, 9) were designed and synthesized as carbon-neutral, environment-friendly adhesion material. Bicyclic skeleton were constructed using the Diels-Alder reaction of furan and methyl acrylate, both readily accessible starting material from a biomass via bio-refinery process. After reduction of ester functionality, resulting hydroxyl moieties were coupled to epichlorohydrin to provide the epoxy-functionalized furanic monomers (8, 9). The structure of new furanic monomers was confirmed by $^1H$ and $^{13}C$ NMR spectroscopy. As UV-curable monomers, basic properties such as UV curing time and the extent of UV curing were evaluated by photo DSC. Photo-curing shrinkages were measured by linear variable differential transformer transducer (LVDT) and the effect of molecular structure on shrinkage was considered. In addition, new synthetic compounds showed the shear strength over 3 MPa when they were photo-cured between polycarbonate plates, which indicates these compounds are feasible to use as photo-curable adhesive materials.

A Study on the Peak Runoff Reduction Effect of Seolleung·Jeongneung Zone by Applying LID(Low Impact Development) System based on the Landscape Architectural Technology (조경기술기반 LID 시스템 적용을 통한 선릉·정릉 권역의 첨두유출량 분석)

  • Kim, Tae-Han;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.4
    • /
    • pp.126-133
    • /
    • 2017
  • This study analyzed hydrological changes of stormwater runoff of Seolleung Jeongneung zone according to the application of LID system based on landscape Architectural technology. The results are as follows. First, when flooding occurred in Gwanghwamun in July 27, 2011, the maximum instantaneous rainfall amount was 183 mm/hr recorded at 10:00 on 27th for 10 minutes, and it was confirmed that rainfall intensity more than three times as high as the maximum rainfall of 57.5 mm/hr. Second, it is possible to control peak flow rate in the case of 1,500mm of soil thickness, so that it is possible to improve the vulnerability of flood damage in Seolleung and Jeongneung zone when applying the LID system. Third, in the berm height scenario, peak flow rate control was not controled in all depth level models, but the first stormwater runoff was delayed by 4 hours and 10 minutes compared to the soil thickness scenario. It was interpreted as a relatively important indicator the soil thickness for the initial stromwater runoff reduction and the berm height for the peak runoff. Through this, the systematic adaptation of landscape-friendly ecological factors within the cultural property protection zone could theoretically confirm the effects of flood disaster prevention.

Greenhouse Gas Reduction from Paddy by Environmentally-Friendly Intermittent Irrigation: A Review (환경 친화적인 간단관개를 통한 논에서의 온실가스 저감)

  • Choi, Joongdae;Uphoff, Norman;Kim, Jonggun;Lee, Suin
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.43-56
    • /
    • 2019
  • Irrigated and flooded rice paddy contributes to the greenhouse gas emissions (GHG) that affect climate. This in turn affects the supply and reliability of the water needed for rice production. This dynamic makes current rice production methods foreseeably less sustainable over time while having other undesirable effects. Intermittent irrigation by a means of the system of rice intensification (SRI) and alternate wetting and drying (AWD) methods was reviewed to reduce global warming potential (GWP) from 29% to 90% depending on site-specific characteristics from flooded rice paddy and analyzed to be a promising option for enhancing the productivity of water as well, an increasingly constraining resource. Additional benefits associated with the SRI/AWD can be less arsenic in the grain and less degradation of water quality in the run-off from rice paddies. Adoption and expansion of intermittent irrigation of SRI/AWD may require costly public and private investments in irrigation infrastructure that can precisely make irrigation control, and the involvement and upgrading of water management agencies and farmer organizations to enhance management capabilities. Private and public collaboration as a means of earning carbon credit under the clean-development mechanism (CDM) with SRI/AWD for industries to meet as a part of their GHG emission quota as well as a social contribution and publicity program could contribute to adopt intermittent irrigation and rural investment and development. Also, inclusion of SRI and AWD in programs designed under CDM and/or in official development assistance (ODA) projects could contribute to climate-change mitigation and help to achieve UN sustainable development goals (SDGs).

Studies on Derivation of Appropriate Geodetic System Transformation Schemes for Spatial Data (공간정보의 측지기준체계 변환 기법 도출에 관한 연구)

  • Yun, Seonghyeon;Lee, Hungkyu;Song, Jinhun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.561-571
    • /
    • 2020
  • Seven techniques widely used in the geodetic transformations have been reviewed and compared to figure out their theoretical characteristics. A series of numerical tests were performed about four data sets. This was followed by result analyses in terms of transformation residuals and accuracies together with some hypothesis testings based on the student-t distribution to confirm the statistical significance of the techniques. In the case of the transformation between the geodetic frames implemented in the same system, no statistical significance was revealed in the results of the 3D transformation techniques, even if the testing area becomes large as the Asia-Oceania continent. Among the 2D transformations, it was possible for the NTv2 grid modeling technique to deliver improved transformation accuracy. Finally, it was possible from the results analyzed in this study to propose the Helmert transformation to geodetic control points and the NTv2 technique to the 2D spatial data transformation of the geodetic systems.

A study of measures to improve the system for the construction of deep tunnels in urban area (도심지 대심도 터널 건설을 위한 제도개선 방안 연구)

  • Hoonki Moon;Joon-Shik Moon;Jongho Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.469-478
    • /
    • 2023
  • The deep tunnel in urban area is a future-oriented construction plan that allows the above-ground space to be used as an eco-friendly park and transportation infrastructure to be constructed in the underground space. However, tunnel construction is often depicted as to cause ground collapse in some media and movies. In fact, while the construction of a deep tunnel in the urban area is underway, the project face with difficulties due to opposition complaints from residents near the route. In this study, we sought to identify perceptions on deep space development and citizen concerns through a public opinion survey regarding deep tunnels. By analyzing laws relevant with the promotion of deep tunnel construction, we reviewed the possibility of public engagement at each stage of the construction and investigated separated surface rights related to compensation for underground space. Through the results of the public opinion survey, it was identified that the concerns of citizens were problems that current technology could solve. Citizen's concerns were improved into a system that confirmed the stability of tunnel construction through public participation, and improvement measures were presented to encourage cooperation from those concerned regarding the establishment of divided superficies.