• Title/Summary/Keyword: Entropy M

Search Result 197, Processing Time 0.028 seconds

Complexity Pattern of Center of Pressure between Genders via Increasing Running Speed (달리기 속도 증가에 따른 성별 CoP (Center of Pressure)의 복잡성 패턴)

  • Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.247-254
    • /
    • 2019
  • Objective: The goal of this study was to determine the center of pressure (CoP) complexity pattern in approximate entropy technique between genders at different conditions of running speed. Background: It is conducted to evaluate the complexity pattern of CoP in the increment of running speed to have insights to injury prediction, stability, and auxiliary aids for the foot. Method: Twenty men (age=22.3±1.5 yrs.; height=176.4±5.4 cm; body weight=73.9±8.2 kg) and Twenty women (age=20.8±1.2 yrs.; height=162.8±5.2 cm; body weight=55.0±6.3 kg) with heel strike pattern were recruited for the study. While they were running at 2.22, 3.33, 4.44 m/s speed on a treadmill (instrumented dual belt treadmills, USA) with a force plate, CoP data were collected for the 10 strides. The complexity pattern of the CoP was analyzed using the ApEn technique. Results: The ApEn of the medial-lateral and antero-posterior CoP in the increment of running speed showed significantly difference within genders (p<.05), but there were not statistically significant between genders at all conditions of running speed. Conclusion: Based on the results of this study, CoP complexity pattern in the increment of running speed was limited to be characterized between genders as an indicator to judge the potential injury and stability. Application: In future studies, it is needed to investigate the cause of change for complexity of CoP at various running speed related to this study.

Approximate Entropy of hypertension: Effect of Anesthesia (정상혈압환자와 고혈압환자의 마취전후의 근사엔트로피의 비교)

  • Yum, M.K.;Kim, H.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.368-371
    • /
    • 1996
  • Background: Recently, measure of heart rate variability and the nonlinear "complexity" of heart rate dynamics have been used as indicators of cardiovascular health. Several investigators have demonstrated that heart rate variability decreased in aging, congestive heart failure and coronary heart disease. Because hypertensive patients showed alternation of cardiovascular homeostasis, we designed this study to evaluate the effect of anesthesia in hypertensive patients with approximate entropy (ApEn). Methods: With informed consent, eighteen normotensive patients and eighteen hypertensive patients were given no premedication. ECG data were collected from 10 minutes before induction to 15 minutes after induction. Collected ECG data were stored into computer binary files. We calculated ApEn from the collected ECG data. Results: Before induction, ApEn of hypertensive patients was significantly lower than normotensive patients(p<0.05). During induction and maintain of anesthesia, there was no difference of ApEn between two groups. During induction and maintain of anesthesia, in normotensive group, ApEn was significantly lower than that of preinduction(p<0.05). And ApEn during maintain of anesthesia was lower than that of induction(p<0.05). During maintain of anesthesia, in hypertensive group, ApEn was significantly lower than that of preinduction(p<0.05). Conclusions: Before induction, ApTn of hypertensive patients is significantly lower than normotensive patients. As anesthesia was deepened, ApEn of two groups were decreased. Because the baroreflex of hypertensive patients is already decreased, decreasing of ApEn of hypertensive patients during anesthesia is less than that of normotnesive patients.

  • PDF

The Solvolysis of Benzoyl Chloride in Water-Acetone Mixtures Under High Pressure

  • Jee, Jong-Gi;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.31-39
    • /
    • 1987
  • By using a complete rate constant($k_e$) which treats a solvent (water) as a reactant, and a conventional rate constant($k_c$), which ignores the solvent in describing the rate, the parameters ${\Delta}V^{\neq}_s,\;{\Delta}H^{\neq}_s\;and\;{\Delta}S^{\neq}_s$ were introduced. These quantities represent the volume change, the enthalpy change, and the entropy change accompanying the electrostriction which occurs when solvent molecules condense on the activated complex. The authors measured the rates of the solvolysis of benzoyl chloride in water-acetone mixtures at $15^{\circ}$ to $30^{\circ}C$ and 1 bar to 2500 bars. Applying the authors' theory to the experimental results, the parameters, ${\Delta}V^{\neq}_s,\;{\Delta}H^{\neq}_s\;and\;{\Delta}S^{\neq}_s$ were evaluated, and it was found that they are all negative, indicating that water dipoles condense on the activated complex. They also proposed the following equations: ${\Delta}H^{\neq}_c\;=\;{\Delta}H^{\neq}_e\;+\;{\Delta}H^{\neq}_s\;and\; {\Delta}S^{\neq}_c\;=\;{\Delta}S^{\neq}_e\;+{\Delta}S^{\neq}_s\;,\;where\;{\Delta}H^{\neq}_c\;and\;{\Delta}H^{\neq}_c\;and\;{\Delta}S^{\neq}_s $are the activation enthalpy change and the activation entropy change for the conventional reaction rate, respectively, and ${\Delta}H^{\neq}_e$ and ${\Delta}S^{\neq}_e$ are the corresponding quantities for the complete reaction rate. The authors proposed that for the $SN_1$ type, all the quantities, ${\Delta}V^{\neq}_s,\;{\Delta}S^{\neq}_s\;,{\Delta}H^{\neq}_s\;and\;{\Delta}S^{\neq}_s$ are comparatively large, and for the $SN_2$ type, these quantities are smaller than for the $SN_1$ type, and occasionally the case ${\Delta}S^{\neq}_e$ < 0 occurs. Using these criteria, the authors concluded that at high temperature, high pressure and for a high water content solvent, the SN_1$ type mechanism predominates whereas in the reversed case the $SN_2$M type predominates.

Uncertainty Analysis of Radar-Rainfall Estimation Process Using Three Uncertainty Quantitative Methods (3가지 불확실성 정량화 방법을 활용한 레이더 강우량 추정과정에서의 불확실성 분석)

  • Lee, Jae-Kyoung;Lee, Han-Yong;Lee, Hae-Gwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.204-204
    • /
    • 2018
  • 수문 기상레이더는 강우량을 바로 추정하지 못하고 여러 단계의 정량적 강우량 추정과정을 거치게 되므로 많은 불확실성 발생요소가 존재한다. 불확실성 관련한 기존 연구들은 정량적 레이더 기반 강우량 추정과정에서 보정방법을 이용하여 각 단계별 불확실성을 줄이는 연구들을 수행하였다. 하지만 기존 연구들은 전체 과정에 대한 포괄적인 불확실성을 나타내지 못하고 각 단계별 불확실성의 상대적인 비율도 제시하지 못하는 단점이 있다. 본 연구에서는 정량적 레이더강우량 추정과정의 각 단계별 불확실성을 정량화하고 불확실성 전파를 나타낼 수 있는 적합한 방법을 제시하였다. 첫 번째로 초기와 최종 불확실성, 각 단계별 불확실성의 변동과 상대적인 비율을 나타낼 수 있는 새로운 개념을 제안하였다. 두 번째로 레이더기반 추정과정의 불확실성 정량화와 전파과정을 분석하기 위해 Maximum Entropy Method (MEM), Uncertainty Delta Method (UMD), Modified-Narrow Uncertainty Method (M-NUM)를 적용하였다. 세 번째로 레이더기반 강우량 추정과정의 불확실성 정량화를 위해 2개 품질관리 알고리즘, 2개 강우량 추정방법, 2개 후처리 강우량 보정방법을 2012년 여름철 18개 사례에 대하여 사용하였다. 적용결과, 최종 불확실성(후처리 강우량 보정 불확실성)이 초기 불확실성(품질관리 불확실성)보다 작게 나타나 불확실성이 감소하는 것으로 나타났다. 하지만 레이더강우량 추정단계의 불확실성은 증가하는 것으로 나타났다. 또한 레이더강우량 추정과정에서 각 단계별로 적합한 방법을 선정하는 것이 각 단계별로 불확실성이 감소시킬 수 있음을 확인하였다. 따라서 본 연구는 새로운 방법이 명확히 불확실성을 정량화할 수 있으며 정확한 정량적 레이더 강우추정에 기여할 것으로 판단한다.

  • PDF

Comparison of Soil Pore Properties between Anthropogenic and Natural Paddy Field Soils From Computed Tomographic Images

  • Chun, Hyen Chung;Jung, Ki-Yuol;Choi, Young Dae;Jo, Su-min;Lee, Sanghun;Hyun, Byung-Keun;Shin, Kooksik;Sonn, Yeonkyu;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.351-360
    • /
    • 2015
  • Human influence on soil formation has dramatically increased with human civilization and industry development. Increase of anthropogenic soils induced researches on the anthropogenic soils; classification, chemical and physical characteristics of anthropogenic soils and plant growth from anthropogenic soils. However there have been no comprehensive analyses on soil pore or physical properties of anthropogenic soils from 3 dimensional images in Korea. The objectives of this study were to characterize physical properties of anthropogenic paddy field soils by depth and to find differences between natural and anthropogenic paddy field soils. Soil samples were taken from two anthropogenic and natural paddy field soils; anthropogenic (A_c) and natural (N_c) paddy soils with topsoil of coarse texture and anthropogenic (A_f) and natural (N_f) paddy soils with topsoil of fine texture. The anthropogenic paddy fields were reestablished during the Arable Land Remodeling Project from 2011 to 2012 and continued rice farming after the project. Natural paddy fields had no artificial changes or disturbance in soil layers up to 1m depth. Samples were taken at three different depths and analyzed for routine physical properties (texture, bulk density, etc.) and pore properties with computer tomography (CT) scans. The CT scan provided 3 dimensional images at resolution of 0.01 mm to calculate pore radius size, length, and tortuosity of soil pores. Fractal and configuration entropy analyses were applied to quantify pore structure and analyze spatial distribution of pores within soil images. The results of measured physical properties showed no clear trend or significant differences across depths or sites from all samples, except the properties from topsoils. The results of pore morphology and spatial distribution analyses provided detailed information of pores affected by human influences. Pore length and size showed significant decrease in anthropogenic soils. Especially, pores of A_c had great decrease in length compared to N_c. Fractal and entropy analyses showed clear changes of pore distributions across sites. The topsoil layer of A_c showed more degradation of pore structure than that of N_c, while pores of A_f topsoil did not show significant degradation compared with those of N_f. These results concluded that anthropogenic soils with coarse texture may have more effects on pore properties than ones with fine texture. The reestablished paddy fields may need more fundamental remediation to improve physical conditions.

MICROSTRUCTURE AND ELECTROCHEMICAL BEHAVIORS OF EQUIATOMIC TiMoVCrZr AND Ti-RICH TiMoVCrZr HIGH-ENTROPY ALLOYS FOR METALLIC BIOMATERIALS

  • HOCHEOL SONG;SEONGI LEE;KWANGMIN LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1317-1322
    • /
    • 2020
  • The present study investigated various thermodynamic parameters, microstructures and electrochemical behaviors of TiMoVCrZr and Ti-rich TiMoVCrZr high-entropy alloys (HEAs) prepared by vacuum arc remelting. The microstructures of the alloys were analyzed using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and potentiodynamic polarization tests. The determined thermodynamic values of the Ω-parameter and the atomic size difference (δ) for the HEAs were determined to be in the range of Ω ≥ 1.1, and δ ≤ 6.6% with valance electron configuration (VEC) ≤ 5.0, suggesting the HEAs were effective at forming solid solutions. XRD patterns of the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed four phases consisting of the body centered cubic1 (BCC1), BCC2, hexagonal close-packed (HCP), and intermetallic compound Cr2Zr phases. Three phases were observed in the XRD patterns of Ti-rich Ti40Mo15V15Cr15Zr15 (BCC, HCP, and Cr2Zr) and a single BCC phase was observed in Ti-rich Ti60Mo10V10Cr10Zr10 HEAs. The backscattered-electron (BSE) images on the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed BCC and HCP phases with Cr2Zr precipitates, suggesting precipitation from the HCP solid solution during the cooling. The micro-segregation of Ti-rich Ti60Mo10V10C10Zr10 HEAs appeared to decrease remarkably. The alloying elements in the HEAs were locally present and no phase changes occurred even after additional HIP treatment. The lowest current density obtained in the polarization potential test of Ti-rich Ti40Mo15V15Cr15Zr15 HEA was 7.12×10-4 mA/cm2 was obtained. The studied TiMoVCrZr HEAs showed improved corrosion characteristics as compared to currently available joint replacement material such as ASTM F75 alloy.

Development of Deep Learning Model for Detecting Road Cracks Based on Drone Image Data (드론 촬영 이미지 데이터를 기반으로 한 도로 균열 탐지 딥러닝 모델 개발)

  • Young-Ju Kwon;Sung-ho Mun
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Drones are used in various fields, including land survey, transportation, forestry/agriculture, marine, environment, disaster prevention, water resources, cultural assets, and construction, as their industrial importance and market size have increased. In this study, image data for deep learning was collected using a mavic3 drone capturing images at a shooting altitude was 20 m with ×7 magnification. Swin Transformer and UperNet were employed as the backbone and architecture of the deep learning model. About 800 sheets of labeled data were augmented to increase the amount of data. The learning process encompassed three rounds. The Cross-Entropy loss function was used in the first and second learning; the Tversky loss function was used in the third learning. In the future, when the crack detection model is advanced through convergence with the Internet of Things (IoT) through additional research, it will be possible to detect patching or potholes. In addition, it is expected that real-time detection tasks of drones can quickly secure the detection of pavement maintenance sections.

Characteristics of Particle Flow and Heat Transfer in Liquid-Particle Swirling Fluidized Beds (액체-입자 Swirling 유동층에서 유동입자 흐름 및 열전달 특성)

  • Son, Sung-Mo;Kang, Suk-Hwan;Kang, Yong;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.505-512
    • /
    • 2006
  • Characteristics of particle holdup and heat transfer were investigated in a liquid-particle swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of liquid velocity, particle size and swirling liquid ratio($R_s$) on the particle holdup and immersed heater-to-bed overall heat transfer coefficient were examined. The particle holdup increased with increasing particle size and swirling liquid ratio but decreased with increasing liquid velocity.The local particle holdup was relatively high in the region near the heater when the $R_s$ value was 0.1~0.3, but the radial particle holdup was almost uniform when the $R_s$ value was 0.5, whereas, when the $R_s$ value was 0.7, the local particle holdup was relatively low in the region near the heater. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of $R_s$ from 0.1 to 0.5. The Kolmogorov entropy exhibited its maximum value with increasing liquid velocity. The value of overall heat transfer coefficient(h) showed its maximum value with the variation of liquid velocity, bed porosity or swirling liquid ratio, but it increased with increasing particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The particle holdup and overall heat transfer coefficient were well correlated in terms of dimensionless groups of operating variables.

On the artificially-upstream flux splitting method

  • Sun M.;Takayama K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.156-157
    • /
    • 2003
  • A simple method is proposed to split the flux vector of the Euler equations by introducing two artificial wave speeds. The direction of wave propagation can be adjusted by these two wave speeds. This idea greatly simplifies the upwinding, and leads to a new family of upwind schemes. Numerical flux function for multi-dimensional Euler equations is formulated for any grid system, structured or unstructured. A remarkable simplicity of the scheme is that it successfully achieves one-sided approximation for all waves without recourse to any matrix operation. Moreover, its accuracy is comparable with the exact Riemann solver. For 1-D Euler equations, the scheme actually surpasses the exact solver in avoiding expansion shocks without any additional entropy fix. The scheme can exactly resolve stationary contact discontinuities, and it is also freed of the carbuncle problem in multi­dimensional computations.

  • PDF

Automated Negotiation Methods for Multi-attribute Negotiation (다속성 협상문제 해결을 위한 자동협상 방법론 연구)

  • Choi, Hyung-Rim;Hong, Soon-Goo;Park, Young-Jae;Park, Yong-Sung;Yoo, Dong-Yeol;Park, Byung-Joo;Sadeh, Norman M.;Kim, Hyun-Soo
    • Asia pacific journal of information systems
    • /
    • v.16 no.4
    • /
    • pp.1-25
    • /
    • 2006
  • This research approached the negotiation problem from the seller's perspective in the make-to-order manufacturing industry in order to solve the multi-attribute automated negotiation problem. To this end, more than 'two negotiation attributes are defined and a preferred value of each negotiation alternative is calculated based on the entropy value of each attribute. And then, the best option is selected according to the utility function of each negotiator, a penalty of negotiation delay, and conviction of possibility of negotiation success. The suggested automated negotiation methods in this study can be employed for the development of advanced automated negotiation systems.