DOI QR코드

DOI QR Code

Complexity Pattern of Center of Pressure between Genders via Increasing Running Speed

달리기 속도 증가에 따른 성별 CoP (Center of Pressure)의 복잡성 패턴

  • Ryu, Jiseon (Department of Health and Exercise Science, Korea National Sport University)
  • Received : 2019.10.10
  • Accepted : 2019.10.30
  • Published : 2019.12.31

Abstract

Objective: The goal of this study was to determine the center of pressure (CoP) complexity pattern in approximate entropy technique between genders at different conditions of running speed. Background: It is conducted to evaluate the complexity pattern of CoP in the increment of running speed to have insights to injury prediction, stability, and auxiliary aids for the foot. Method: Twenty men (age=22.3±1.5 yrs.; height=176.4±5.4 cm; body weight=73.9±8.2 kg) and Twenty women (age=20.8±1.2 yrs.; height=162.8±5.2 cm; body weight=55.0±6.3 kg) with heel strike pattern were recruited for the study. While they were running at 2.22, 3.33, 4.44 m/s speed on a treadmill (instrumented dual belt treadmills, USA) with a force plate, CoP data were collected for the 10 strides. The complexity pattern of the CoP was analyzed using the ApEn technique. Results: The ApEn of the medial-lateral and antero-posterior CoP in the increment of running speed showed significantly difference within genders (p<.05), but there were not statistically significant between genders at all conditions of running speed. Conclusion: Based on the results of this study, CoP complexity pattern in the increment of running speed was limited to be characterized between genders as an indicator to judge the potential injury and stability. Application: In future studies, it is needed to investigate the cause of change for complexity of CoP at various running speed related to this study.

Keywords

References

  1. Alexander, I. J., Chao, E. Y. & Johnson, K. A. (1990). The assessment of dynamic foot- to- ground contact forces and plantar pressure distribution: a review of the evolution of current techniques and clinical applications. Foot Ankle, 11(3), 152-167. https://doi.org/10.1177/107110079001100306
  2. Benda, B. J., Riley, P. O. & Krebs, D. E. (1994). Biomechanical relationship between center of gravity and center of pressure during standing. IEEE Transactions on Rehabilitation Engineering, 2(1), 3-10. https://doi.org/10.1109/86.296348
  3. Buzzi, U. H., Stergiou, N., Kurz, M., Hageman, P. A. & Heidel, J. (2003). Nonlinear dynamics indicates aging affects variability during gait. Clinical Biomechanics, 18, 435-443. https://doi.org/10.1016/S0268-0033(03)00029-9
  4. Carpenter, M. G., Frank, J. S., Winter, D. A. & Peysar, G. W. (2001). Sampling duration effects on center of pressure summary measures. Gait Posture, 13(1), 35-40. https://doi.org/10.1016/S0966-6362(00)00093-X
  5. Chesnin, K. J., Selby-Silverstein, L. & Besser, M. P. (2000). Comparison of an in-shoe pressure measurement device to a force plate: concurrent validity of center of pressure measurements. Gait Posture, 12(2), 128-133. https://doi.org/10.1016/S0966-6362(00)00071-0
  6. Costa, M., Peng, C. K., Goldberger, A. L. & Hausdorff, J. M. (2003). Multicale entropy analysis of human gait dynamics. Physica, A 330, 53-60. https://doi.org/10.1016/j.physa.2003.08.022
  7. De Cock, A., Vanrenterghen, A., Willems, T., Witvrouw, E. & De Clercq, D. (2008) The trajectory of the centre of pressure during barefoot running as a potential measure for foot function. Gait & Posture, 27, 669-675. https://doi.org/10.1016/j.gaitpost.2007.08.013
  8. Dillman C. J. (1975). Kinematic analyses of running. Exercise and Sport Science Reviews, 3, 193-218. https://doi.org/10.1249/00003677-197500030-00010
  9. Dingwell, J. B. & Cusumano, J. P. (2000). Nonlinear time series analysis of normal and pathological human walking. Chaos, 10(4), 848-863. https://doi.org/10.1063/1.1324008
  10. Dixon, S. J. (2006). Application of center-of-pressure data to indicate rearfoot inversion-eversion in shoed running. Journal of the American Podiatric Medical Association, 96(4), 305-312. https://doi.org/10.7547/0960305
  11. Fernie, G. R., Gryfe, C. I., Holliday, P. I. & Llewellyn, A. (1982). The relationship of postural sway in standing to the incidence of falls in geriatric subjects. Age and Ageing, 11(1), 11-16. https://doi.org/10.1093/ageing/11.1.11
  12. Goldberger, A. L. (1996). Nonlinear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet, 347, 1312-1314. https://doi.org/10.1016/S0140-6736(96)90948-4
  13. Gribble, P. A. & Hertek, J. (2004). Effect of Lower-Extremity Fatigue on Postural Control. Archives of Physical Medicine and Rehabilitation, 85(4), 589-592. https://doi.org/10.1016/j.apmr.2003.06.031
  14. Hass, C. J., Gregor, R. J., Waddell, D. E., Oliver, A., Smith, D. W. & Fleming, P. (2004). The influence of Tai Chi training on the center of pressure trajectory during gait initiation in older adults. Archive Physical Medecal Rehabilitation, 85(10), 1593-1598. https://doi.org/10.1016/j.apmr.2004.01.020
  15. Hwang, S. H., Park, S. W., Choi, H. S. & Kim, Y. H. (2008). Net center of pressure analysis during gait initiation in patient with hemiplegia. 13th International Conference on Biomedical Engineering ICBME, 1962-1964.
  16. Jamshidi, N., Rostami, M., Najarian, S., Menhaj, M. B., Saadatnia, M. & Salamia, F. (2010). Differences in center of pressure trajectory between normal and steppage gait. Journal of Research in Medical Sciences, 15(1), 33-40.
  17. Karlsson, A. & Frykberg, G. (2000). Correlations between force plate measures for assessment of balance. Clinical Biomechanics, 15(5), 365-369. https://doi.org/10.1016/S0268-0033(99)00096-0
  18. Kantz, H. & Schreiber, S. (1997). Nonlinear time series analysis. Cambrige University Press, Cambridge, UK.
  19. Keller, T., Weisbrger, A., Ray, J., Hasan, S., Shiavi, R. & Spengler, D. (1996). Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clinical Biomechanics, 11, 253-259. https://doi.org/10.1016/0268-0033(95)00068-2
  20. Kil, H. J., Ryu, S. H., Park, S. K. & Ryu, J. S. (2018). Analysis of the area of CoP trajectories according to running speed and its correlation with ankle joint motion. Journal of Ergonomics Society of Korea, 37(6), 691-702. https://doi.org/10.5143/jesk.2018.37.6.691
  21. Kim, I. H. (2008). Nonlinear dynamical analysis of electroencephalogram in adolescents with attention-deficit/hyperactivity disorder during cognitve task. A dissertation for the degree of doctor science. Graduate school Kongju National University.
  22. Ko, J. H. & Newell K. M. (2016). Aging and the complexity of center of pressure in static and dynamic postural tasks. Neuroscience Letters, 610, 104-109. https://doi.org/10.1016/j.neulet.2015.10.069
  23. Lafond, D., Corriveau, H., Hebert, R. & Prince, F. (2004). Intrasession reliability of center of pressure measures of postural steadiness in healthy elderly people. Archive Physical Medicine Rehabilitation, 85(6), 896-901. https://doi.org/10.1016/j.apmr.2003.08.089
  24. Leardini, A., Benedetti, M. G., Berti, L., Bettinelli, D., Nativo, R. & Giannini, S. (2007). Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait & Posture, 25, 453-462. https://doi.org/10.1016/j.gaitpost.2006.05.017
  25. Leardini, A., Benedetti, M. G., Catani, F., Simoncini, L. & Giannini, S. (1999). An anatomically based protocol for the description of foot segment kinematics during gait. Journal of Clinical Biomechanics, 14, 528-536. https://doi.org/10.1016/S0268-0033(99)00008-X
  26. Lipsitz, I. A. (2002). Dynamics of stability: the physiologic basis of functional health and frailty. The Journals of Gerontology: Series A, 57(3), 115-125. https://doi.org/10.1093/gerona/57.3.B115
  27. Lugade, V. & Aufman, K. (2014). Center of Pressure trajectory during gait: A comparison of four foot position. Gait Posture, 40(1), 252-254. https://doi.org/10.1016/j.gaitpost.2013.12.023
  28. Newell, K. M., Deutsch, K. M., Sosnoff, J. J. & Mayer-Kresss, G. (2006). Variability in motor output as noise: A default and erroneous proposition?, Movement system variability (pp.3-23). Champaign, IL: Human Kinetics.
  29. Nilsson, J. & Thorstensson, A. (1989). Ground reaction forces at different speeds of human walking and running. Acta Physiologica Scandinavica, 136, 217-227. https://doi.org/10.1111/j.1748-1716.1989.tb08655.x
  30. Onell, A. (2000). The vertical ground reaction force for analysis of balance? Gait Posture, 12(1),7-13. https://doi.org/10.1016/S0966-6362(00)00053-9
  31. Orendurff, M. S., Bernatz, G. C., Schoen, J. A. & Klute, G. K. (2008). Kinetic mechansims to alter walking speed. Gait & Posture, 27, 603-610. https://doi.org/10.1016/j.gaitpost.2007.08.004
  32. Park, S. H., Yoon, S. H., Park, S. K. & Ryu, J. S. (2018). Initial contact angle of the foot segment and GRF components by the gender differnce. Korean Journal of Physical Education, 57(2), 625-633. https://doi.org/10.23949/kjpe.2018.03.57.2.44
  33. Park, S. K., Koo, S. B., Yoon, S. H., Park, S. H., Kim, Y. C. & Ryu, J. S. (2018) Gender Dfferences in Ground Reaction Force Components. Korean Journal of Sport Biomechanics, 28(2), 101-108. https://doi.org/10.5103/kjsb.2018.28.2.101
  34. Park, S. K., Ryu, S. H., Kim, J. B., Yoon, S. H. & Ryu, J. S. (2019). Complexity of comparison of center of pressure between fallers and non-fallers during gait. Korean Journal of Sport Biomechanics, 29(2), 1-7.
  35. Patterson, R., Papa, E., Knebl, J. & Bugnariu, N. (2018). Evaluation of a more sensitive measure for prediction of changes in dynamic postural stability and fall risk. 8th World Congress of Biomechanics. www.wcb2018.com.
  36. Peterson, C. L., Kautz, S. A. & Neptune, R. R. (2011). Braking and propulsive impulses increase with speed during accelerated and decelerated walking. Gait & Posture, 33, 562-567. https://doi.org/10.1016/j.gaitpost.2011.01.010
  37. Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceding National Academy Science USA, 88, 2297-2301. https://doi.org/10.1073/pnas.88.6.2297
  38. Preatoni, E., Ferrario, M., Dona, G., Hamill, J. & Rodano, R. (2010). Motor variability in sports: A non-linear analysis of race walking. Journal of Sports Sciences, 28(12), 1327-1336. https://doi.org/10.1080/02640414.2010.507250
  39. Preatoni, E., Hamill, J., Harrison, A. J., Hayes, K., Emmerik, V. R., Wilson, C. & Rodano, R. (2014). Movement variability and skills monitoring in sports. Sports Biomechanics, 12(2), 69-92. https://doi.org/10.1080/14763141.2012.738700
  40. Roerdink, M., De Haart, M., Daffertshofer, A., Donker, S. F., Geurts, A. C. & Beek, P. J. (2006). Dynamical structure of centerof-pressure trajectories in patients recovering from stroke. Experimental Brain Research, 174(2), 256-269. https://doi.org/10.1007/s00221-006-0441-7
  41. Ryu, J. S. (2006). The elderly's coupling pattern between the foot and the tibia and its variability during walking. The Korean Journal of Physical Education, 45(1), 747-756.
  42. Ryu, J. S. (2017). Relationship between CoP and local stability of the lower joint during walking in the elderly women. Korean Journal of Sport Biomechanics, 27(2), 133-140. https://doi.org/10.5103/KJSB.2017.27.2.133
  43. Sakaguchi, M., Taguchi, K., Miyashita, Y. & Katsuno, S. (1994). Changes with ageing in head and center of foot pressure sway in children. International Journal of Pediatric Otorhinolaryngology, 29(2),101-109. https://doi.org/10.1016/0165-5876(94)90089-2
  44. Sanjari, M. A, Boozari, S., Jamshidi, A. A. & Nikmaram, M. R. (2016). Fatigue Effect on Linear Center of Pressure Measures during Gait in People with Flat Feet. Asian Journal Sports Medcine, 7(4), e34832.
  45. Scherer, P. & Sobiesk, G. (1994). The center of pressure index in the evaluation of foot orthoses in shoes. Clinics in Podiatric Medicine Surgery, 11(2), 355.
  46. Segers, V., Aerts, P., Lenoir, M. & De Clereq, D. (2006). Spatiotemporal characteristics of the walk-to-run and run-towalk transition when gradually changing speed. Gait & Posture, 24, 247-254. https://doi.org/10.1016/j.gaitpost.2005.09.006
  47. Sleimen-Malkoun, R., Temprado, J. J. & Hong, S. L. (2014). Aging induced loss of complexity and dedifferentiation: consequences for coordination dynamics within and between brain, muscular and behavior levels. Front Aging Nuroscience, 27,. https://doi.org/10.3389/fnagi.2014.00140,
  48. Stergiou, N. (2004). Innovative analyses of Human Movement, Human Kinetics.
  49. Vaillancourt, D. E. & Newell, K. M. (2002). Changing complexity in human behavior and physiology through aging and disease. Neurobiology of Aging, 23, 1-11. https://doi.org/10.1016/S0197-4580(01)00247-0
  50. Walter, S. D., Hart, L. E., Sutton, J. R., Mcintosh, J. M. & Gauld, M. (1988). Training habits and injury experience in distance runners, age and sex related factors. The Physician and Sports Medicine, 16, 101.
  51. Williams, K. R. (1985). Biomechanics of running. Exercise and Sports Science Reviews, 13, 389-441. https://doi.org/10.1249/00003677-198500130-00013
  52. Willems, T. M., De Clercq, D., Delbaere, K., Vanderstraeten, G., De Cock, A. & Witvrouw, E. A. (2006). Prospective study of gait related risk factors for exercise-related lower leg pain. Gait Posture, 23(1), 91-98. https://doi.org/10.1016/j.gaitpost.2004.12.004
  53. Willems, T., Witvrouw, E., Delbaere, K., De Cock, A. & De Clercq, D. (2005). Relationship between gait biomechanics and inversion sprains: a prospective study of risk factors. Gait Posture, 21(4), 379-387. https://doi.org/10.1016/j.gaitpost.2004.04.002
  54. Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait Posture, 3(4), 193-214. https://doi.org/10.1016/0966-6362(96)82849-9
  55. Yamada, N. (1995). Chaotic swaying of the upright posture. Human Movement Science, 14, 711-726. https://doi.org/10.1016/0167-9457(95)00032-1