DOI QR코드

DOI QR Code

The Solvolysis of Benzoyl Chloride in Water-Acetone Mixtures Under High Pressure

  • Jee, Jong-Gi (Department of Chemistry, Teacher's College, Kyungpook Nat'l Univ.) ;
  • Ree, Taik-Yue (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • Published : 1987.02.20

Abstract

By using a complete rate constant($k_e$) which treats a solvent (water) as a reactant, and a conventional rate constant($k_c$), which ignores the solvent in describing the rate, the parameters ${\Delta}V^{\neq}_s,\;{\Delta}H^{\neq}_s\;and\;{\Delta}S^{\neq}_s$ were introduced. These quantities represent the volume change, the enthalpy change, and the entropy change accompanying the electrostriction which occurs when solvent molecules condense on the activated complex. The authors measured the rates of the solvolysis of benzoyl chloride in water-acetone mixtures at $15^{\circ}$ to $30^{\circ}C$ and 1 bar to 2500 bars. Applying the authors' theory to the experimental results, the parameters, ${\Delta}V^{\neq}_s,\;{\Delta}H^{\neq}_s\;and\;{\Delta}S^{\neq}_s$ were evaluated, and it was found that they are all negative, indicating that water dipoles condense on the activated complex. They also proposed the following equations: ${\Delta}H^{\neq}_c\;=\;{\Delta}H^{\neq}_e\;+\;{\Delta}H^{\neq}_s\;and\; {\Delta}S^{\neq}_c\;=\;{\Delta}S^{\neq}_e\;+{\Delta}S^{\neq}_s\;,\;where\;{\Delta}H^{\neq}_c\;and\;{\Delta}H^{\neq}_c\;and\;{\Delta}S^{\neq}_s $are the activation enthalpy change and the activation entropy change for the conventional reaction rate, respectively, and ${\Delta}H^{\neq}_e$ and ${\Delta}S^{\neq}_e$ are the corresponding quantities for the complete reaction rate. The authors proposed that for the $SN_1$ type, all the quantities, ${\Delta}V^{\neq}_s,\;{\Delta}S^{\neq}_s\;,{\Delta}H^{\neq}_s\;and\;{\Delta}S^{\neq}_s$ are comparatively large, and for the $SN_2$ type, these quantities are smaller than for the $SN_1$ type, and occasionally the case ${\Delta}S^{\neq}_e$ < 0 occurs. Using these criteria, the authors concluded that at high temperature, high pressure and for a high water content solvent, the SN_1$ type mechanism predominates whereas in the reversed case the $SN_2$M type predominates.

Keywords

References

  1. Z. Phys. Chem. (Frankfurt am Main) v.8 E.U. Frank
  2. Proc. Natl. Acad. Sci. U.S. v.58 W.L. Marshall;A.S. Quist
  3. J. Phys. Chem. v.72 A.S. Quist;W.L. Marshall
  4. Z. Electrochem. v.66 M. Eigen;K. Tamm
  5. J. Phys. Chem. v.70 G. Atkinson;S. Petucci
  6. J. Phys. Chem. v.71 G. Atlinson;S.K. Kor
  7. J. Phys. Chem. v.73 L.A. Dunn;W.L. Marshall
  8. J. Phys. Chem. v.74 W.L. Marshall
  9. J. Chem. Soc. B.L. Archer;R.F. Hudson
  10. J. Chem. Soc. D.A. Brown;R.F. Hudson
  11. J. Am. Chem. Soc. v.85 M.L. Bender;M.C. Chen
  12. J. Korean Chem. Soc. v.18 J.-G. Jee;J.J. Jung;J.U. Hwang
  13. Ann. Chim. Phys. v.8 G. Aime
  14. Landolt-Bornstein Tabellen
  15. J. Korean Chem. Soc. v.17 W.K. Kim;I.C. Lee
  16. Phil. Mag. v.2 E.A. Guggenheim
  17. J. Am. Chem. Soc. v.73 S. Winstein;E. Grunwald;H.W. Jones
  18. Acta Chem. Scand. v.19 A. Kivinen
  19. Physical Organic Chemistry L.P. Hammett