• Title/Summary/Keyword: Ensiling period

Search Result 38, Processing Time 0.022 seconds

Effects of Ensiling Period and Bacterial Inoculants on Chemical Compositions and Fermentation Characteristics of Rye Silage

  • Lee, Seong Shin;Joo, Young Ho;Choi, Jeong Seok;Jeong, Seung Min;Paradhipta, Dimas Hand Vidya;Noh, Hyeon Tak;Han, Ouk Kyu;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.4
    • /
    • pp.259-266
    • /
    • 2021
  • The present study was aimed to estimate the effect of ensiling period and bacterial inoculants on chemical compositions and fermentation characteristics on rye silage harvested at delayed stage. Rye (Secale cereale L.) was harvested after 20 days of heading stage (29.4% dry matter, DM). The harvested rye forage was applied with different inoculants following: applications of distilled water (CON), Lactobacillus brevis (LBB), Leuconostoc holzapfelii (LCH), or mixture of LBB and LCH at 1:1 ratio (MIX). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 50 (E50D) and 100 (E100D) days in triplicates. The E50D silages had higher in vitro digestibilities of DM (IVDMD, p<0.001) and neutral detergent fiber (IVNDFD, p=0.013), and lactate (p=0.009), and acetate (p=0.011) than those of E100D, but lower pH, lactic acid bacteria (LAB), and yeast. By inoculant application, LCH had highest IVDMD and IVNDFD (p<0.05), while MIX had highest lactate and lowest pH (p<0.05). The CON and LCH in E50D had highest LAB and yeast (p<0.05), whereas LBB in E100D had lowest (p<0.05). Therefore, this study concluded that LCH application improved the nutrient digesbility (IVDMD and IVNDFD) of lignified rye silage, and longer ensiling period for 100 days enhanced the fermentation characteristics of silage compared to ensiling for 50 days.

Effect of Molasses on Nutritional Quality of Cassava and Gliricidia Tops Silage

  • Van Man, Ngo;Wiktorsson, Hans
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1294-1299
    • /
    • 2002
  • The study aimed to evaluate the influence of molasses in ensiling cassava and Gliricidia tops, common crop residues in the farming systems of Vietnam. Four levels of sugarcane molasses: 0, 30, 60 and 90 kg per tonne of fresh material, and two storage periods (2 and 4 months) for each of the two plant species: Cassava (Manihot esculenta, Crantz) and Gliricidia (Gliricidia sepium, Jacq.) were allocated in a 4${\times}$2 factorial completely randomized block design with 3 replicates. A total of 48 plastic bags, each one containing 10 kg herbage were used. Based on the colour, smell and mold appearance, all the silages were considered to be acceptable but with more spoiled silages with higher levels of additives. DM of herbages (25.8% and 22.4% in cassava and Gliricidia tops, respectively) were not changed during ensiling and the molasses additive had no significant effect on the silage DM. Contents of CP and NDF in the cassava tops silage decreased significantly with increased level of molasses and storage period, respectively. The mean pH values of non-molasses silages were 4.39 in cassava tops and 4.60 in Gliricidia tops. Increased additive levels significantly reduced silage pH in Gliricidia (p<0.01) but not in cassava tops silage (p=0.10). Longer storage period significantly reduced pH in both silages. The water soluble carbohydrate (WSC) concentrations of cassava tops and Gliricidia tops were reduced by 90 and 80%, respectively, after ensiling. Molasses addition increased significantly the silage WSC concentrations. HCN contents in the fresh cassava and Gliricidia tops were reduced by 68 and 43%, respectively, after 2 months ensiling, and were continuously reduced during storage. A reduction of 25% and 42% in the tannin content of fresh cassava and Gliricidia tops, respectively was found after ensiling. Storage time and molasses additive had little affect on the tannin content. Silage lactic acid concentrations were around 1,0% of DM in cassava and 1.7% of DM in Gliricidia top silages, and no effect of molasses additive and storage time was found. It is concluded that cassava and Gliricidia tops residues can be preserved successfully by ensiling, and only low levels of molasses additive are needed to improve silage fermentation.

The Effects of Different Moisture Content and Ensiling Time on Silo Degradation of Structural Carbohydrate of Orchardgrass

  • Yahaya, M.S.;Kawai, M.;Takahashi, J.;Matsuoka, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.213-217
    • /
    • 2002
  • This study determined the influence of moisture, ensiling time and their interactions on the losses of hemicellulose and cellulose during ensiling of orchardgrass. Orchardgrass containing 80 (HM), 70 (MM) and 55% (LM) moisture was ensiled in 3 laboratory silos of 500 ml capacity for 3, 7, 21 and 91 days. The dry matter (DM), water-soluble carbohydrates (WSC), hemicellulose and cellulose contents of the ensiled orchardgrass was lowered than that of the untreated grass regardless of moisture content. Ensiling orchardgrass for 91 days (d) decreased (p<0.01) hemicellulose contents from 19 to 15%, 20 to 15% and 18 to 12% and cellulose from 31 to 29%, 29 to 26% and 27 to 26% for LM, MM and HM silage, respectively. Results from fermentation of LM and MM silages were within acceptable guidelines except for butyric acid and ammonia after 3 weeks of ensiling of MM which appeared to be lower than ideal. The results of the fermentation of HM silages were poor showing higher concentration of acetic, propionic and butyric acids and traces of isovaleric, valeric and caproic acids with ammonia at all stage of time. While the DM losses from LM and MM silages over the ensiling period were acceptable, that for HM silage increased to 13% after 91 d ensiling, confirming a poor fermentation process occurred. The greatest WSC losses occurred within 7 d of ensiling and the lowest losses occurred after 3 weeks of ensiling. Except in HM silage, the hemicellulose and cellulose losses were highest (p<0.01) in the first 3 weeks of ensiling. Hemicellulose losses were between 19 and 22% and 4.2 and 5.9% up to 3 weeks and after 3 weeks of ensiling LM and MM silages, respectively. Cellulose losses were small. In contrast, hemicellulose losses after 3 weeks of ensiling of HM silage was about 50% higher than over the first 3 weeks possibly due to clostridial type fermentation. The results showed that increasing ensiling time of high moisture orchardgrass would result in the excessive losses of DM, WSC, hemicellulose and cellulose in the silage.

Effect of Mixed Microbes Addition on Chemical Change and Silage Storage of Spent Mushroom Substrates (복합생균제 첨가가 버섯부산물의 화학적 성분 변화와 발효 저장성에 미치는 영향)

  • Kim, Young-Il;Seok, Joon-Sang;Kwak, Wan-Sup
    • Journal of Animal Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.831-838
    • /
    • 2008
  • This study was conducted to evaluate effects of mixed microbes addition on physico-chemical, fermentative and microbial parameters of sawdust-based spent mushroom substrates(SMS). The SMS was inoculated with mixed microbes(Enterobacter ludwigii, Bacillus cereus, 2 strains of Bacillus subtillis, Saccharomyces cerevisiae and Lactobacillus plantarum) at 1% level(wet basis) and anaerobically fermented during the different periods(up to 8th week). Compared with the SMS before ensiling, the ensiled one had higher CP, NDF and ADF percentages and lower DM and NFC percentages. However, levels of change were very low. The in situ ruminal disappearance of SMS DM and NDF decreased with the ensiling period prolonged. For fermentative parameters, pH reduced and lactic acid contents increased after ensiling, compared with those after ensiling. At 8th week of ensiling, pH increased and lactic acid contents reduced again, compared with those at 4th week of ensiling; however, the silage still showed favorable fermentation status. Lactic acid bacteria counts did not change throughout 8 weeks of ensiling. Counts of total microbes and yeast reduced after 4th week of ensiling period. Counts of lactic acid bacteria and yeast at 8th week of ensiling were in the levels of 108cfu/g. These results indicate that anaerobic fermentation with microbial addition could be an effective way for the long term(8 weeks) storage of the SMS.

Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

  • Wang, Huili;Ning, Tingting;Hao, Wei;Zheng, Mingli;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.62-72
    • /
    • 2016
  • This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages.

Effect of Ensiling Sudax Fodder with Broiler Litter and Candida Yeast on the Changes in pH, Lactic Acid and Nitrogen Fractions

  • Rasool, S.;Gilani, A.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.98-105
    • /
    • 1997
  • Sudax fodder (Sorghum sudanense ${\times}$ Sorhum vulgare) was ensiled in laboratory silos with or without 20, 30, or 40 percent broiler litter and 6 percent molasses with or without Candida yeast. The samples were analyzed for pH, lactic acid and nitrogen fractions at the start of the experiment and at 5 days interval, thereafter till 40 days. A sharp decline in pH and increase in lactic acid content was observed on fifth day of ensiling. Thereafter, the rate of pH decline decreased till 20 days and that of lactic acid increase till 25 days and the remained constant. Increasing levels of broiler litter had adverse effect on pH drop and lactic acid increase of silages. Total-N content of the silages had little variation throughout the ensiling period. A sharp decline in protein-N and increase in ammonia-N content was observed on day 5 of ensiling. Thereafter, the content of protein-N increased till 20 days and that of ammonia-N decreased till 15 days, but these changes were very small compared to that occurred during the first 5 days of ensiling. The level of broiler litter had inverse relationship with protein degradation and direct relationship with ammonia production. The yeast inoculum failed to produce any significant effect.

Fermentative Quality of Guineagrass Silage by Using Fermented Juice of the Epiphytic Lactic Acid Bacteria (FJLB) as a Silage Additive

  • Bureenok, S.;Namihira, T.;Tamaki, M.;Mizumachi, S.;Kawamoto, Y.;Nakada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.807-811
    • /
    • 2005
  • This experiment examined the characteristics of fermented juice of epiphytic lactic acid bacteria (FJLB) prepared by the addition of glucose, sucrose and molasses as a fermentation substrate. The effect of FJLB on the fermentative quality and changes in chemical composition during fermentation of guineagrass silage were also investigated. The pH value of the silages treated with FJLB rapidly decreased, and reached to the lowest value within 7 days of start of fermentation, as compared to the control. The number of lactic acid bacteria (LAB) in the treated silages increased for the first 3 days, thereafter the number of LAB declined gradually up to the end of the experiment. Silages treated with FJLB had larger populations of LAB than the control. Ammonia-nitrogen production increased throughout the ensiling period, which in the control and no-sugar added FJLB silages were higher than the other treated silages. Lactic acid levels varied with the time of ensiling and among the silage treatments. For any sugar FJLB treated silages, the lactic acid increased initially, and then slightly reduced to less than 50 g/kg of dry matter until 49 days after ensiling, except the silage treated with glucose added FJLB. Nevertheless, lactic acid content of the control decreased constantly from the beginning of ensiling and was not found after 35 days. Moreover, acetic acid content increased throughout the ensiling period. All the FJLB treated silages had significantly (p<0.05) lower pH and ammonia-nitrogen content, while significantly (p<0.05) higher lactic acid content and V-score value compared with the control. This study confirmed that the applying of FJLB with any sugar substrate improved fermentative quality of silage.

Ensiling Characteristics and the In situ Nutrient Degradability of a By-product Feed-based Silage

  • Kim, Y.I.;Oh, Y.K.;Park, K.K.;Kwak, W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.201-208
    • /
    • 2014
  • This study was conducted to evaluate the ensiling characteristics and the in situ degradability of a by-product feed (BF)-based silage. Before ensilation, the BF-based mixture was composed of 50% spent mushroom substrate, 21% recycled poultry bedding, 15% ryegrass straw, 10.8% rice bran, 2% molasses, 0.6% bentonite, and 0.6% microbial inoculant on a wet basis and ensiled for up to 4 weeks. The BF-based silage contained on average 39.3% moisture, 13.4% crude protein (CP), and 52.2% neutral detergent fiber (NDF), 49% total digestible nutrient, and 37.8% physically effective $NDF_{1.18}$ on a dry matter (DM) basis. Ensiling the BF-based silage for up to 4 weeks affected (p<0.01) the chemical composition to a small extent, increased (p<0.05) the lactic acid and $NH_3$-N content, and decreased (p<0.05) both the total bacterial and lactic acid bacterial counts from $10^9$ to $10^8$ cfu/g when compared to that before ensiling. These parameters indicated that the silage was fermented and stored well during the 4-week ensiling period. Compared with rice or ryegrass straws, the BF-based silage had a higher (p<0.05) water-soluble and filterable fraction, a lower insoluble degradable DM and CP fraction (p<0.05), a lower digestible NDF (p<0.05) fraction, a higher (p<0.05) DM and CP disappearance and degradability rate, and a lower (p<0.05) NDF disappearance and degradability rate. These results indicated that cheap, good-quality BF-based roughage could be produced by ensiling SMS, RPB, rice bran, and a minimal amount of straw.

Co-ensiling garlic stalk with citrus pulp improves the fermentation quality and feed-nutritional value

  • Lee, Youn Hee;Ahmadi, Farhad;Kim, Young Il;Oh, Young-Kyoon;Kwak, Wan Sup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.436-445
    • /
    • 2020
  • Objective: Ensiling is a simple and effective method for long-term preservation; however, less information exists about the ensilability characteristics of garlic stalk (GS). Therefore, the objectives were to examine the ensiling feasibility of GS. Methods: The GS was ensiled alone or inoculated with Lactobacillus plantarum KU5 in the presence or absence of 5% molasses and ensiled for 7, 14, and 28 d. As an alternative storage method, GS was co-ensiled with wet citrus pulp (CP) at different proportions (GS:CP: 70:30, 60:40, 50:50, and 40:60). Analysis was made on physicochemical, fermentative, and nutritional parameters. Results: The GS was found to be a biomass which is difficult to ensile. A combination of microbial inoculant and molasses was successful in the improvement of the silage fermentation quality of GS. Co-ensiling of GS with wet CP at the mixing ratio of 50:50 provided the most desirable silage fermentation parameters, including the substantial lactic acid formation, low final pH, minor effluent loss, and the more favorable organoleptic properties. Conclusion: Co-ensiling GS with CP appears to be a simple and viable method of conservation, enabling the more efficient utilization of these by-product resources over a prolonged period.

Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content

  • Li, Yanbing;Nishino, Naoki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1304-1312
    • /
    • 2013
  • The effects of storage period and aerobic deterioration on the bacterial community were examined in Italian ryegrass (IR), guinea grass (GG), and whole-crop maize (WM) silages. Direct-cut forages were stored in a laboratory silo for 3, 7, 14, 28, 56, and 120 d without any additives; live counts, content of fermentation products, and characteristics of the bacterial community were determined. 2,3-Butanediol, acetic acid, and lactic acid were the dominant fermentation products in the IR, GG, and WM silages, respectively. The acetic acid content increased as a result of prolonged ensiling, regardless of the type of silage crop, and the changes were distinctively visible from the beginning of GG ensiling. Pantoea agglomerans, Rahnella aquatilis, and Enterobacter sp. were the major bacteria in the IR silage, indicating that alcoholic fermentation may be due to the activity of enterobacteria. Staphylococcus sciuri and Bacillus pumilus were detected when IR silage was spoiled, whereas between aerobically stable and unstable silages, no differences were seen in the bacterial community at silo opening. Lactococcus lactis was a representative bacterium, although acetic acid was the major fermentation product in the GG silage. Lactobacillus plantarum, Lactobacillus brevis, and Morganella morganii were suggested to be associated with the increase in acetic acid due to prolonged storage. Enterobacter cloacae appeared when the GG silage was spoiled. In the WM silage, no distinctive changes due to prolonged ensiling were seen in the bacterial community. Throughout the ensiling, Weissella paramesenteroides, Weissella confusa, and Klebsiella pneumoniae were present in addition to L. plantarum, L. brevis, and L. lactis. Upon deterioration, Acetobacter pasteurianus, Klebsiella variicola, Enterobacter hormaechei, and Bacillus gibsonii were detected. These results demonstrate the diverse bacterial community that evolves during ensiling and aerobic spoilage of IR, GG, and WM silages.