Browse > Article
http://dx.doi.org/10.5333/KGFS.2021.41.4.259

Effects of Ensiling Period and Bacterial Inoculants on Chemical Compositions and Fermentation Characteristics of Rye Silage  

Lee, Seong Shin (Institute of Agriculture & Life Science, Gyeongsang National University)
Joo, Young Ho (Institute of Agriculture & Life Science, Gyeongsang National University)
Choi, Jeong Seok (Division of Applied Life Science (BK21Plus), Gyeongsang National University)
Jeong, Seung Min (Division of Applied Life Science (BK21Plus), Gyeongsang National University)
Paradhipta, Dimas Hand Vidya (Faculty of Animal Science, Universitas Gadjah Mada)
Noh, Hyeon Tak (Division of Applied Life Science (BK21Plus), Gyeongsang National University)
Han, Ouk Kyu (Department of Crop Science, Korea National College of Agriculture and Fisheries)
Kim, Sam Churl (Institute of Agriculture & Life Science, Gyeongsang National University)
Publication Information
Journal of The Korean Society of Grassland and Forage Science / v.41, no.4, 2021 , pp. 259-266 More about this Journal
Abstract
The present study was aimed to estimate the effect of ensiling period and bacterial inoculants on chemical compositions and fermentation characteristics on rye silage harvested at delayed stage. Rye (Secale cereale L.) was harvested after 20 days of heading stage (29.4% dry matter, DM). The harvested rye forage was applied with different inoculants following: applications of distilled water (CON), Lactobacillus brevis (LBB), Leuconostoc holzapfelii (LCH), or mixture of LBB and LCH at 1:1 ratio (MIX). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 50 (E50D) and 100 (E100D) days in triplicates. The E50D silages had higher in vitro digestibilities of DM (IVDMD, p<0.001) and neutral detergent fiber (IVNDFD, p=0.013), and lactate (p=0.009), and acetate (p=0.011) than those of E100D, but lower pH, lactic acid bacteria (LAB), and yeast. By inoculant application, LCH had highest IVDMD and IVNDFD (p<0.05), while MIX had highest lactate and lowest pH (p<0.05). The CON and LCH in E50D had highest LAB and yeast (p<0.05), whereas LBB in E100D had lowest (p<0.05). Therefore, this study concluded that LCH application improved the nutrient digesbility (IVDMD and IVNDFD) of lignified rye silage, and longer ensiling period for 100 days enhanced the fermentation characteristics of silage compared to ensiling for 50 days.
Keywords
Bacterial inoculant; Digestibility; Ensiling period; Fermentation characteristic; Rye silage;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim, M.J., Kim, H.S., Kim, S.C. and Kwak, Y.S. 2018. Complete genome sequence of lanthionine-producing Lactobacillus brevis strain 100D8, generated by PacBio sequencing. Microbiology Resource Announcements. 7:e01220-18. doi:10.1128/MRA.01220-18   DOI
2 Kung Jr, L., Shaver, R.D., Grant, R.J. and Schmidt, R.J. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science. 101:4020-4033. doi:10.3168/jds.2017-13909   DOI
3 Lee, S.S., Lee, H.J., Paradhipta, D.H.V., Joo, Y.H., Kim, S.B., Kim, D.H. and Kim, S.C. 2019. Temperature and microbial changes of corn silage during aerobic exposure. Asian-Australasian Journal of Animal Sciences. 32:988-995. doi:10.5713/ajas.18.0566   DOI
4 Li, F., Ding, Z., Ke, W., Xu, D., Zhang, P., Bai, J., Mudassar, S., Muhammad, I. and Guo, X. 2019. Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of corn stalk silage at two different temperatures: Ensiling characteristics, carbohydrates composition and enzymatic saccharification. Bioresource Technology. 282:211-221. doi:10.1016/j.biortech.2019.03.022   DOI
5 De Bruyne, K., Schillinger, U., Caroline, L., Boehringer, B., Cleenwerck, I., Vancanneyt, M., De Vuyst, L., Franz, C.M.A.P. and Vandamme, P. 2007. Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. International Journal of Systematic and Evolutionary Microbiology. 57:2952-2959. doi:10.1099/ijs.0.65292-0   DOI
6 Wang, Y., He, L., Xing, Y., Zhou, W., Pian, R., Yang, F., Chen, X. and Zhang, Q. 2019. Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresource Technology. 284:349-358. doi:10.1016/j.biortech.2019.03.139   DOI
7 Patterson, J.D., Sahle, B., Gordon, A.W., Archer, J.E., Yan, T., Grant, N. and Ferris, C.P. 2021. Grass silage composition and nutritive value on Northern Ireland farms between 1998 and 2017. Grass and Forage Science. 76:300-308. doi:10.1111/gfs.12534   DOI
8 Der Bedrosian, M.C., Nestor Jr, K.E. and Kung Jr, L. 2012. The effects of hybrid, maturity, and length of storage on the composition and nutritive value of corn silage. Journal of Dairy Science. 95:5115-5126. doi:10.3168/jds.2011-4833   DOI
9 Lindgren, S.E. and Dobrogosz, W.J. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Reviews. 7:149-163. doi:10.1111/j.1574-6968.1990.tb04885.x   DOI
10 Mohd-Setapar, S.H., Abd-Talib, N. and Aziz, R. 2012. Review on crucial parameters of silage quality. Apcbee Procedia. 3:99-103. doi:10.1016/j.apcbee.2012.06.053   DOI
11 Kim, H.S., Han, O.K. and Kwak, Y.S. 2017. Complete genome sequence and functional study of the fibrinolytic enzyme-producing bacterium Leuconostoc holzapfelii 5H4, a silage probiotic. Journal of Genomics. 5:32-35. doi:10.7150/jgen.19407   DOI
12 AOAC. 2005. Official method of analysis (18th ed.). Association of Official Analytical Chemists, Washington DC, USA.
13 Chaney, A.L. and Marbach, E.P. 1962. Modified reagents for determination of urea and ammonia. Clinical Chemistry. 8:130-132. doi:10.1093/clinchem/8.2.130   DOI
14 Goering, M.K. and Van Soest, P.J. 1970. Forage fiber analyses (Apparatus, reagents, procedures, and some applications). In Agriculture handbook No. 379. United States Department of Agriculture, Washington DC, USA.
15 Herrmann, C., Heiermann, M. and Idler, C. 2011. Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresource Technology. 102:5153-5161. doi:10.1016/j.biortech.2011.01.012   DOI
16 Adamberg, K., Kask, S., Laht, T.M. and Paalme, T. 2003. The effect of temperature and pH on the growth of lactic acid bacteria: A pH-auxostat study. International Journal of Food Microbiology. 85:171-183. doi:10.1016/S0168-1605(02)00537-8   DOI
17 Liu, B., Popp, D., Muller, N., Strauber, H., Harms, H. and Kleinsteuber, S. 2020. Three novel clostridia isolates produce n-caproate and iso-butyrate from lactate: Comparative genomics of chain-elongating bacteria. Microorganisms. 8:1970-1992. doi:10.3390/microorganisms8121970   DOI
18 Moon, Y.H., Kim, S.C., Cho, W.G., Lee, S.S. and Cho, S.J. 2014. Effects of supplementation of spent mushroom (Flammulina velutipes) substrates on the fermentative quality of rye silage. Journal of Mushroom. 12:138-143. doi:org/10.14480/JM.2014.12.2.138   DOI
19 Petruzzi, L., Rosaria Corbo, M., Campaniello, D., Speranza, B., Sinigaglia, M. and Bevilacqua, A. 2020. Antifungal and antibacterial effect of propolis: A comparative hit for food-borne pseudomonas, enterobacteriaceae and fungi. Foods. 9:559. doi:10.3390/foods9050559   DOI
20 Tilley, J.M.A. and Terry, R.A. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science. 18:104-111. doi:10.1111/j.1365-2494.1963.tb00335.x   DOI
21 Lee, H.J., Han, O.K., Joo, Y.H., Lee, S.S., Paradhipta, D.H.V., Ku, J.H., Min, H.G., Oh, J.S. and Kim, S.C. 2020. Effect of sowing and harvesting dates on forage productions and feed values of rye and triticale in Youngnam mountain area. Journal of the Korean Society of Grassland and Forage Science. 40:57-65. doi:10.5333/KGFS.2020.40.1.57   DOI
22 Li, G., Wang, L., Yang, J., He, H., Jin, H., Li, X., Ren, T., Ren, Z., Li, F., Han, X., Zhao, X., Dong, L., Li, Y., Song, Z., Yan, Z., Zheng, N., Shi, C., Wang, Z., Yang, S., Xiong, Z., Zhang, M., Sun, G., Zheng, X., Gou, M., Ji, C., Du, J., Zheng, H., Dolezel, J., Deng, X.W., Stein, N., Yang, Q., Zhang, K. and Wang, D. 2021. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nature Genetics. 53:574-584. doi:10.1038/s41588-021-00808-z   DOI
23 McDonald, P., Henderson, A.R. and Heron, S.J.E. 1991. The biochemistry of silage (2nd ed.). Chalcombe Publications, Bucks, UK.
24 Paradhipta, D.H.V., Joo, Y.H., Lee, H.J., Lee, S.S., Kwak, Y.S., Han, O.K., Kim, D.H. and Kim, S.C. 2020. Effects of wild or mutated inoculants on rye silage and its rumen fermentation indices. Asian-Australasian Journal of Animal Sciences. 33:949-956. doi:10.5713/ajas.19.0308   DOI
25 SAS Inst. Inc. 2002. SAS user's guide. Version 8 edition. SAS Inst., Inc., Cary, NC, USA.
26 Giraffa, G., Chanishvili, N. and Widyastuti, Y. 2010. Importance of lactobacilli in food and feed biotechnology. Research in Microbiology. 161:480-487. doi:10.1016/j.resmic.2010.03.001   DOI
27 Adesogan, A.T., Krueger, N., Salawu, M.B., Dean, D.B. and Staples, C.R. 2004. The influence of treatment with dual purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass. Journal of Dairy Science. 87:3407-3416. doi:10.3168/jds.S0022-0302(04)73476-1   DOI
28 Grum, D.E., Shockey, W.L. and Weiss, W.P. 1991. Electrophoretic examination of alfalfa silage proteins. Journal of Dairy Science. 74:146-154. doi:10.3168/jds.S0022-0302(91)78155-1   DOI
29 Guo, T., Zhang, L., Xin, Y., Xu, Z., He, H. and Kong, J. 2017. Oxygen-inducible conversion of lactate to acetate in heterofermentative Lactobacillus brevis ATCC 367. Applied and Environmental Microbiology. 83:e01659-17. doi:10.1128/AEM.01659-17   DOI
30 Tran, T.M.T., Nguyen, M.T., Nguyen, H.V. and Nishino, N. 2018. Effects of wilting and lactic acid bacteria inoculation on fermentation and microbial community of elephant grass silage produced in Vietnam. Grassland Science. 64:151-155. doi:10.1111/grs.12187   DOI
31 Yang, E., Fan, L., Yan, J., Jiang, Y., Doucette, C., Fillmore, S. and Walker, B. 2018. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. Amb Express. 8:1-14. doi:10.1186/s13568-018-0536-0   DOI
32 Zhao, O. 2019. Effect of harvest dates and preservation methods on forage quality and β-carotene content of rye (Secale cereale L.). Ph.D. dissertation. Seoul National University, Seoul, Korea.
33 Khota, W., Pholsen, S., Higgs, D. and Cai, Y. 2016. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. Journal of Dairy Science. 99:9768-9781. doi:10.3168/jds.2016-11180   DOI
34 Kasaei, A., Mobini-Dehkordi, M., Mahjoubi, F. and Saffar, B. 2017. Isolation of taxol-producing endophytic fungi from Iranian yew through novel molecular approach and their effects on human breast cancer cell line. Current Microbiology. 74:702-709. doi:10.1007/s00284-017-1231-0   DOI