• 제목/요약/키워드: Ensemble combination

검색결과 55건 처리시간 0.024초

Ensemble Model Output Statistics를 이용한 평창지역 다중 모델 앙상블 결합 및 보정 (A Combination and Calibration of Multi-Model Ensemble of PyeongChang Area Using Ensemble Model Output Statistics)

  • 황유선;김찬수
    • 대기
    • /
    • 제28권3호
    • /
    • pp.247-261
    • /
    • 2018
  • The objective of this paper is to compare probabilistic temperature forecasts from different regional and global ensemble prediction systems over PyeongChang area. A statistical post-processing method is used to take into account combination and calibration of forecasts from different numerical prediction systems, laying greater weight on ensemble model that exhibits the best performance. Observations for temperature were obtained from the 30 stations in PyeongChang and three different ensemble forecasts derived from the European Centre for Medium-Range Weather Forecasts, Ensemble Prediction System for Global and Limited Area Ensemble Prediction System that were obtained between 1 May 2014 and 18 March 2017. Prior to applying to the post-processing methods, reliability analysis was conducted to identify the statistical consistency of ensemble forecasts and corresponding observations. Then, ensemble model output statistics and bias-corrected methods were applied to each raw ensemble model and then proposed weighted combination of ensembles. The results showed that the proposed methods provide improved performances than raw ensemble mean. In particular, multi-model forecast based on ensemble model output statistics was superior to the bias-corrected forecast in terms of deterministic prediction.

앙상블 학습 알고리즘을 이용한 컨벌루션 신경망의 분류 성능 분석에 관한 연구 (A Study on Classification Performance Analysis of Convolutional Neural Network using Ensemble Learning Algorithm)

  • 박성욱;김종찬;김도연
    • 한국멀티미디어학회논문지
    • /
    • 제22권6호
    • /
    • pp.665-675
    • /
    • 2019
  • In this paper, we compare and analyze the classification performance of deep learning algorithm Convolutional Neural Network(CNN) ac cording to ensemble generation and combining techniques. We used several CNN models(VGG16, VGG19, DenseNet121, DenseNet169, DenseNet201, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, GoogLeNet) to create 10 ensemble generation combinations and applied 6 combine techniques(average, weighted average, maximum, minimum, median, product) to the optimal combination. Experimental results, DenseNet169-VGG16-GoogLeNet combination in ensemble generation, and the product rule in ensemble combination showed the best performance. Based on this, it was concluded that ensemble in different models of high benchmarking scores is another way to get good results.

The ensemble approach in comparison with the diverse feature selection techniques for estimating NPPs parameters using the different learning algorithms of the feed-forward neural network

  • Moshkbar-Bakhshayesh, Khalil
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3944-3951
    • /
    • 2021
  • Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS) technique that outperforms other ones. Moreover, some approaches such as using synthetic dataset, in presence of large number of FS techniques, are very tedious and time consuming task. In this study to tackle the issue of dependency of estimation accuracy on the selected FS technique, a methodology based on the heterogeneous ensemble is proposed. The performance of the major learning algorithms of neural network (i.e. the FFNN-BR, the FFNN-LM) in combination with the diverse FS techniques (i.e. the NCA, the F-test, the Kendall's tau, the Pearson, the Spearman, and the Relief) and different combination techniques of the heterogeneous ensemble (i.e. the Min, the Median, the Arithmetic mean, and the Geometric mean) are considered. The target parameters/transients of Bushehr nuclear power plant (BNPP) are examined as the case study. The results show that the Min combination technique gives the more accurate estimation. Therefore, if the number of FS techniques is m and the number of learning algorithms is n, by the heterogeneous ensemble, the search space for acceptable estimation of the target parameters may be reduced from n × m to n × 1. The proposed methodology gives a simple and practical approach for more reliable and more accurate estimation of the target parameters compared to the methods such as the use of synthetic dataset or trial and error methods.

부도예측을 위한 확신 기반의 선택 접근법에서 앙상블 멤버 사이즈의 영향에 관한 연구 (Impact of Ensemble Member Size on Confidence-based Selection in Bankruptcy Prediction)

  • 김나라;신경식;안현철
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.55-71
    • /
    • 2013
  • 부도예측을 위한 지식기반시스템에서 모델은 실적에 영향을 끼치는 주요한 요인이다. 예측 모형의 개발에 있어 초기 연구들은 통계기법 및 인공지능기법들을 이용하여 최고 실적을 가지는 단일 모델을 만드는데 주력하였다. 1980년대 중반 이후에는 다수 기술의 통합(하이브리드), 더 나아가, 다수 모델의 결과의 결합(앙상블) 기법이 수많은 실험에서 개별 모델들보다 더 나은 결과를 보여왔다. 다수 모델들의 출력값들을 결합하여 한 개의 최종 예측값을 산출하는 앙상블 모델링에서 결합기법은 앙상블의 예측 정확도에 영향을 끼치는 중요한 이슈이다. 본 논문은 부도예측을 위한 앙상블 결합기법으로서 앙상블 멤버들이 다른 유형의 연속형 수치 출력값들을 산출하더라도 통일된 확신을 측정할 수 있는 확신 기반의 선택 접근법을 제안하고 이에 대한 앙상블 멤버 사이즈의 영향을 연구하였다. 실험 결과는 앙상블 멤버들의 생성 타입에 따라 결합하는 모델 개수를 변화시켰을 때 가장 많은 기본 모델들을 가지는 앙상블에서의 제안 결합기법이 부도예측에 가장 자주 사용되는 다른 방법들에 비해서도 가장 높은 실적을 가진다는 것을 보였다.

Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축 (Optimal Multi-Model Ensemble Model Development Using Hierarchical Bayesian Model Based)

  • 권현한;민영미
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1147-1151
    • /
    • 2009
  • In this study, we address the problem of producing probability forecasts of summer seasonal rainfall, on the basis of Hindcast experiments from a ensemble of GCMs(cwb, gcps, gdaps, metri, msc_gem, msc_gm2, msc_gm3, msc_sef and ncep). An advanced Hierarchical Bayesian weighting scheme is developed and used to combine nine GCMs seasonal hindcast ensembles. Hindcast period is 23 years from 1981 to 2003. The simplest approach for combining GCM forecasts is to weight each model equally, and this approach is referred to as pooled ensemble. This study proposes a more complex approach which weights the models spatially and seasonally based on past model performance for rainfall. The Bayesian approach to multi-model combination of GCMs determines the relative weights of each GCM with climatology as the prior. The weights are chosen to maximize the likelihood score of the posterior probabilities. The individual GCM ensembles, simple poolings of three and six models, and the optimally combined multimodel ensemble are compared.

  • PDF

앙상블 수트의 의복형태구성요인의 시각효과에 대한 실험연구 (제2보) - 노년여성의 정면형태체형을 중심으로 - (A Study on the Ensemble Suit Design for Elderly Women's Body Silhouette)

  • 조훈정;위은하
    • 한국가정과학회지
    • /
    • 제10권1호
    • /
    • pp.37-48
    • /
    • 2007
  • The purpose of this study was to investigate the proper combination of ensemble suit details for the body silhouette of elderly women. In this study, the principal component analysis was used to search for the proper combination of suit details for covering defects of body which has been changed unbalanced. The designs of evaluated suits were manipulated in 18 different kinds by the essential elements such as collars, neckline(round neckline, shirt collar, tailored collar), types of one-piece dress(pleats type, gather type, flare type), and opening(opened, closed). The data evaluated by a multiple ranking test was analyzed by mean, paired t-test, ANOVA and Duncan's multiple ranged test. The results were summarized as follows: In case of normal body type, it had complementary effects for upper body with closed round neckline jacket or shirt collar jacket, and for lower and the whole body with a combination of closed tailored collar jacket or shirt collar jacket with pleats or gored type one piece dress. The visual effect for elderly women's body shape was different in opened or closed jacket. And that enhanced by Jacket with collar.

  • PDF

기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증 (Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration)

  • 김세현;김현미;계준경;이승우
    • 대기
    • /
    • 제25권1호
    • /
    • pp.67-83
    • /
    • 2015
  • Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

Transfer Learning-Based Feature Fusion Model for Classification of Maneuver Weapon Systems

  • Jinyong Hwang;You-Rak Choi;Tae-Jin Park;Ji-Hoon Bae
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.673-687
    • /
    • 2023
  • Convolutional neural network-based deep learning technology is the most commonly used in image identification, but it requires large-scale data for training. Therefore, application in specific fields in which data acquisition is limited, such as in the military, may be challenging. In particular, the identification of ground weapon systems is a very important mission, and high identification accuracy is required. Accordingly, various studies have been conducted to achieve high performance using small-scale data. Among them, the ensemble method, which achieves excellent performance through the prediction average of the pre-trained models, is the most representative method; however, it requires considerable time and effort to find the optimal combination of ensemble models. In addition, there is a performance limitation in the prediction results obtained by using an ensemble method. Furthermore, it is difficult to obtain the ensemble effect using models with imbalanced classification accuracies. In this paper, we propose a transfer learning-based feature fusion technique for heterogeneous models that extracts and fuses features of pre-trained heterogeneous models and finally, fine-tunes hyperparameters of the fully connected layer to improve the classification accuracy. The experimental results of this study indicate that it is possible to overcome the limitations of the existing ensemble methods by improving the classification accuracy through feature fusion between heterogeneous models based on transfer learning.

기상청 기후예측시스템(GloSea5)의 과거기후장 앙상블 확대에 따른 예측성능 평가 (Assessment of the Prediction Performance of Ensemble Size-Related in GloSea5 Hindcast Data)

  • 박연희;현유경;허솔잎;지희숙
    • 대기
    • /
    • 제31권5호
    • /
    • pp.511-523
    • /
    • 2021
  • This study explores the optimal ensemble size to improve the prediction performance of the Korea Meteorological Administration's operational climate prediction system, global seasonal forecast system version 5 (GloSea5). The GloSea5 produces an ensemble of hindcast data using the stochastic kinetic energy backscattering version2 (SKEB2) and timelagged ensemble. An experiment to increase the hindcast ensemble from 3 to 14 members for four initial dates was performed and the improvement and effect of the prediction performance considering Root Mean Square Error (RMSE), Anomaly Correlation Coefficient (ACC), ensemble spread, and Ratio of Predictable Components (RPC) were evaluated. As the ensemble size increased, the RMSE and ACC prediction performance improved and more significantly in the high variability area. In spread and RPC analysis, the prediction accuracy of the system improved as the ensemble size increased. The closer the initial date, the better the predictive performance. Results show that increasing the ensemble to an appropriate number considering the combination of initial times is efficient.

특징 강화 방법의 앙상블을 이용한 화자 식별 (Speaker Identification Using an Ensemble of Feature Enhancement Methods)

  • 양일호;김민석;소병민;김명재;유하진
    • 말소리와 음성과학
    • /
    • 제3권2호
    • /
    • pp.71-78
    • /
    • 2011
  • In this paper, we propose an approach which constructs classifier ensembles of various channel compensation and feature enhancement methods. CMN and CMVN are used as channel compensation methods. PCA, kernel PCA, greedy kernel PCA, and kernel multimodal discriminant analysis are used as feature enhancement methods. The proposed ensemble system is constructed with the combination of 15 classifiers which include three channel compensation methods (including 'without compensation') and five feature enhancement methods (including 'without enhancement'). Experimental results show that the proposed ensemble system gives highest average speaker identification rate in various environments (channels, noises, and sessions).

  • PDF