Browse > Article
http://dx.doi.org/10.14191/Atmos.2021.31.5.511

Assessment of the Prediction Performance of Ensemble Size-Related in GloSea5 Hindcast Data  

Park, Yeon-Hee (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences)
Hyun, Yu-Kyung (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences)
Heo, Sol-Ip (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences)
Ji, Hee-Sook (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences)
Publication Information
Atmosphere / v.31, no.5, 2021 , pp. 511-523 More about this Journal
Abstract
This study explores the optimal ensemble size to improve the prediction performance of the Korea Meteorological Administration's operational climate prediction system, global seasonal forecast system version 5 (GloSea5). The GloSea5 produces an ensemble of hindcast data using the stochastic kinetic energy backscattering version2 (SKEB2) and timelagged ensemble. An experiment to increase the hindcast ensemble from 3 to 14 members for four initial dates was performed and the improvement and effect of the prediction performance considering Root Mean Square Error (RMSE), Anomaly Correlation Coefficient (ACC), ensemble spread, and Ratio of Predictable Components (RPC) were evaluated. As the ensemble size increased, the RMSE and ACC prediction performance improved and more significantly in the high variability area. In spread and RPC analysis, the prediction accuracy of the system improved as the ensemble size increased. The closer the initial date, the better the predictive performance. Results show that increasing the ensemble to an appropriate number considering the combination of initial times is efficient.
Keywords
GloSea5; seasonal forecast; prediction performance; ensemble size;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rodwell, M. J., and F. J. Doblas-Reyes, 2006: Mediumrange, monthly, and seasonal prediction for Europe and the use of forecast information. J. Climate, 19, 6025-6046.   DOI
2 Strommen, K., and T. N. Palmer, 2019: Signal and noise in regime systems: A hypothesis on the predictability of the North Atlantic Oscillation. Q. J. R. Meteorol. Soc., 145, 147-163, doi:10.1002/qj.3414.   DOI
3 Talagrand, O., R. Vautard, and B. Strauss, 1997: Evaluation of probabilistic prediction systems. Proc., Workshop on Predictability, Shinfield Park, Reading, UK, ECMWF, 1-25.
4 Williams, R. M., C. A. T. Ferro, and F. Kwasniok, 2013: A comparison of ensemble post-processing methods for extreme events. Q. J. R. Meteorol. Soc., 140, 1112-1120, doi:10.1002/qj.2198.   DOI
5 Ahn, J.-B., J. Lee, and S. Jo, 2018: Evaluation of PNU CGCM ensemble forecast system for boreal winter temperature over South Korea. Atmosphere, 28, 509-520, doi:10.14191/Atmos.2018.28.4.509 (in Korean with English abstract).   DOI
6 Baker, L. H., L. C. Shaffrey, R. T. Sutton, A. Weisheimer, and A. A. Scaife, 2018: An intercomparison of skill and overconfidence/underconfidence of the wintertime North Atlantic Oscillation in multimodel seasonal forecasts. Geophys. Res. Lett., 45, 7808-7817, doi:10.1029/2018GL078838.   DOI
7 Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc., 135, 767-776.   DOI
8 Corti, S., A. Weisheimer, T. N. Palmer, F. J. Doblas-Reyes, and L. Magnusson, 2012: Reliability of decadal predictions. Geophys. Res. Lett., 39, L21712, doi:10.1029/2012GL053354.   DOI
9 Dunstone, N., and Coauthors, 2020: Skilful interannual climate prediction from two large initialised model ensembles. Environ. Res. Lett., 15, 094083, doi:10.1088/1748-9326/ab9f7d.   DOI
10 Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828.   DOI
11 Eade R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-todecadal climate predictions underestimate the predictability of the real world?. Geophys. Res. Lett., 41, 5620-5628, doi:10.1002/2014GL061146.   DOI
12 Giorgi, F., and R. Francisco, 2000: Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Climate Dyn., 16, 169-182.   DOI
13 Weisheimer, A., D. Decremer, D. MacLeod, C. O'Reilly, T. N. Stockdale, S. Johnson, and T. N. Palmer, 2019: How confident are predictability estimates of the winter North Atlantic Oscillation?. Q. J. R. Meteorol. Soc., 145, 140-159, doi:10.1002/qj.3446.   DOI
14 Smith, D. M., and Coauthors, 2020: North Atlantic climate far more predictable than models imply. Nature, 583, 796-800, doi:10.1038/s41586-020-2525-0.   DOI
15 Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 2514-2519, doi:10.1002/2014GL059637.   DOI
16 MacLachlan, C., and Coauthors, 2015: Global Seasonal Forecast System version 5 (GloSea5): a high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc., 141, 1072-1084, doi:10.1002/qj.2396.   DOI
17 Murphy, J. M., 1988: Assessment of the practical utility of extended range ensemble forecasts. Q. J. R. Meteorol. Soc., 116, 89-125.   DOI
18 Muller, W. A., C. Appenzeller, F. J. Doblas-Reyes, and M. A. Liniger, 2005: A debiased ranked probability skill score to evaluate probabilistic ensemble forecasts with small ensemble sizes. J. Climate, 18, 1513-1523.   DOI
19 Richardson, D. S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Q. J. R. Meteorol. Soc., 127, 2473-2489.   DOI
20 Brankovic, C., T. N. Palmer, F. Molteni, S. Tibaldi, and U. Cubasch, 1990: Extended-range predictions with ECMWF models: Time-lagged ensemble forecasting. Q. J. R. Meteorol. Soc., 116, 867-912.   DOI
21 Raynaud, L., and F. Bouttier, 2017: The impact of horizontal resolution and ensemble size for convective-scale probabilistic forecasts. Q. J. R. Meteorol. Soc., 143, 3037-3047, doi:10.1002/qj.3159.   DOI
22 Vitart, F., 2017: Madden - Julian Oscillation prediction and teleconnections in the S2S database. Q. J. R. Meteorol. Soc., 143, 2210-2220, doi:10.1002/qj.3079.   DOI
23 Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-Present). J. Hydrometeor., 4, 1147-1167.   DOI
24 Goddard, L., and Coauthors, 2012: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245-272, doi:10.1007/s00382-012-1481-2.   DOI
25 Hyun, Y.-K., J. Park, J. Lee, S. Lim, S.-I. Heo, H. Ham, S.-M. Lee, H.-S. Ji, and Y. Kim, 2020: Reliability assessment of temperature and precipitation seasonal probability in current climate prediction systems. Atmosphere, 30, 141-154, doi:10.14191/Atmos.2020.30.2.141 (in Korean with English abstract).   DOI
26 Kim, S.-W., 2019: Optimal ensemble size for Sub-seasonal to Seasonal (S2S) prediction system. M. S. thesis, Dept. of Earth and Environmental Sciences, Seoul National University, 41 pp.
27 Kumar, A., A. G. Barnston, and M. P. Hoerling, 2001: Seasonal predictions, probabilistic verifications, and ensemble size. J. Climate, 14, 1671-1676.   DOI
28 Palmer, T., R. Buizza, R. Hagedorn, A. Lawrence, M. Leutbecher, and L. Smith, 2006: Ensemble prediction: a pedagogical perspective. ECMWF Newsletter, 106, 10-17, doi:10.21957/ab129056ew.   DOI