• Title/Summary/Keyword: Engineering analysis

Search Result 89,798, Processing Time 0.083 seconds

Odor Analysis for Beef Freshness Estimation with Electronic Nose (전자코를 이용한 쇠고기의 신선도 변화에 따른 냄새 분석)

  • 김기영;이강진;최규홍;최동수;손재룡;강석원;장영창
    • Journal of Biosystems Engineering
    • /
    • v.29 no.4
    • /
    • pp.317-322
    • /
    • 2004
  • This study was conducted to evaluate the feasibility of identifying freshness of beef using a surface acoustic wave (SAW) sensor based electronic nose. The beef was stored at 5$^{\circ}C$ and aroma was measured with the passage of time. Chromatographic analysis of the odor showed that number of volatile components and their amounts were rapidly increased after 19 days of storage. Classifying beefs according to their storage days was possible using principle component analysis (PCA). Classifying beefs processed from four different origins was also possible with PCA analysis of odor. This study shows that electronic nose can be applied to beef freshness evaluation and classification of its origin.

A comparison of coupled and uncoupled dynamic analysis for the flexible riser in shallow water

  • Jo, Chul-Hee;Kim, Do-Youb;Hwang, Su-Jin;Rho, Yu-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.195-201
    • /
    • 2014
  • Flexible risers have been used extensively in recent years for floating and early production systems. Such risers offer the advantage of having inherent heave compliance in their catenary thereby greatly reducing the complexity of the riser-to-rig and riser-to subsea interfaces. Another advantage with flexible risers is their greater reliability. Concerns about fatigue life, gas permeation and pigging of lines have been overcome by extensive experience with these risers in production applications. In this paper, flexible riser analysis results were compared through coupled and uncoupled dynamic analyses methods. A time domain coupled analysis capability has been developed to model the dynamic responses of an integrated floating system incorporating the interactions between vessel, moorings and risers in a marine environment. For this study, SPM (Single Point Mooring) system for an FSU in shallow water was considered. This optimization model was integrated with a time-domain global motion analysis to assess both stability and design constraints of the flexible riser system.

A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response

  • Zhang, Yibo;Sun, Zhili;Yan, Yutao;Yu, Zhenliang;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.771-784
    • /
    • 2020
  • Reliability analysis techniques combining with various surrogate models have attracted increasing attention because of their accuracy and great efficiency. However, they primarily focus on the structures with continuous response, while very rare researches on the reliability analysis for structures with discontinuous response are carried out. Furthermore, existing adaptive reliability analysis methods based on importance sampling (IS) still have some intractable defects when dealing with small failure probability, and there is no related research on reliability analysis for structures involving discontinuous response and small failure probability. Therefore, this paper proposes a novel reliability analysis method called AGPC-IS for such structures, which combines adaptive Gaussian process classification (GPC) and adaptive-kernel-density-estimation-based IS. In AGPC-IS, an efficient adaptive strategy for design of experiments (DoE), taking into consideration the classification uncertainty, the sampling uniformity and the regional classification accuracy improvement, is developed with the purpose of improving the accuracy of Gaussian process classifier. The adaptive kernel density estimation is introduced for constructing the quasi-optimal density function of IS. In addition, a novel and more precise stopping criterion is also developed from the perspective of the stability of failure probability estimation. The efficiency, superiority and practicability of AGPC-IS are verified by three examples.

Performance-based earthquake engineering methodology for seismic analysis of nuclear cable tray system

  • Huang, Baofeng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2396-2406
    • /
    • 2021
  • The Pacific Earthquake Engineering Research (PEER) Center has been developing a performance-based earthquake engineering (PBEE) methodology, which is based on explicit determination of performance, e.g., monetary losses, in a probabilistic manner where uncertainties in earthquake ground motion, structural response, damage estimation, and losses are explicitly considered. To carry out the PEER PBEE procedure for a component of the nuclear power plant (NPP) such as the cable tray system, hazard curve and spectra were defined for two hazard levels of the ground motions, namely, operation basis earthquake, and safe shutdown earthquake. Accordingly, two sets of spectral compatible ground motions were selected for dynamic analysis of the cable tray system. In general, the PBEE analysis of the cable tray in NPP was introduced where the resulting floor motions from the time history analysis (THA) of the NPP structure should be used as the input motion to the cable tray. However, for simplicity, a finite element model of the cable tray was developed for THA under the effect of the selected ground motions. Based on the structural analysis results, fragility curves were generated in terms of specific engineering demand parameters. Loss analysis was performed considering monetary losses corresponding to the predefined damage states. Then, overall losses were evaluated for different damage groups using the PEER PBEE methodology.

Analysis of dynamic behavior for truss cable structures

  • Zhang, Wen-Fu;Liu, Ying-Chun;Ji, Jing;Teng, Zhen-Chao
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.117-133
    • /
    • 2014
  • Natural vibration of truss cable structures is analyzed based upon the general structural analysis software ANSYS, energy variational method and Rayleigh method, the calculated results of three methods are compared, from which the characteristics of free-vibration are obtained. Moreover, vertical seismic response analysis of truss cable structures is carried out via time-history method. Introducing three natural earthquake waves calculated the results including time-history curve of vertical maximal displacement, time-history curve of maximal internal force. Variation curve of maximal displacement of node along span, and variation curve of maximal internal force of member along span are presented. The results show the formulas of frequencies for truss cable structures obtained by energy variational method are of high accuracy. Furthermore, the maximal displacement and the maximal internal force occur near the 1/5 span point. These provide convenient and simple design method for practical engineering.

Nonlinear analysis of contemporary and historic masonry vaulted elements externally strengthened by FRP

  • Hamdy, Gehan A.;Kamal, Osama A.;El-Hariri, Mohamed O.R.;El-Salakawy, Tarik S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.611-619
    • /
    • 2018
  • This paper addresses numerical modeling and nonlinear analysis of unreinforced masonry walls and vaults externally strengthened using fiber reinforced polymers (FRP). The aim of the research is to provide a simple method for design of strengthening interventions for masonry arched structures while considering the nonlinear behavior. Several brick masonry walls and vaults externally strengthened by FRP which have been previously tested experimentally are modeled using finite elements. Numerical modeling and nonlinear analysis are performed using commercial software. Description of the modeling, material characterization and solution parameters are given. The obtained numerical results demonstrate that externally applied FRP strengthening increased the ultimate capacity of the walls and vaults and improved their failure mode. The numerical results are in good agreement with the experimentally obtained ultimate failure load, maximum displacement and crack pattern; which demonstrates the capability of the proposed modeling scheme to simulate efficiently the actual behavior of FRP-strengthened masonry elements. Application is made on a historic masonry dome and the numerical analysis managed to explain its structural behavior before and after strengthening. The modeling approach may thus be regarded a practical and valid tool for design of strengthening interventions for contemporary or historic unreinforced masonry elements using externally bonded FRP.

Analysis of material dependency in an elastic - plastic contact models using contact mechanics approach

  • Gandhi, V.C. Sathish;Kumaravelan, R.;Ramesh, S.;Sriram, K.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.1051-1066
    • /
    • 2015
  • The study aims on the effect of material dependency in elastic- plastic contact models by contact analysis of sphere and flat contact model and wheel rail contact model by considering the material properties without friction. The various materials are selected for the analysis based on Young's modulus and yield strength ratio (E/Y). The simulation software 'ANSYS' is employed for this study. The sphere and flat contact model is considered as a flattening model, the stress and strain for different materials are estimated. The simulation of wheel-rail contact model is also performed and the results are compared with the flattening model. The comparative study has also been extended for finding out the mean contact pressure for different materials the E/Y values between 150 and 660. The results show that the elastic-plastic contact analysis for materials up to E/Y=296.6 is depend on the nature of material properties and also for this material the mean contact pressure to yield strength reaches 2.65.

An Effective Analysis and Management of Technical Risk to Turn-key based Plant Construction Contracts using Systems Engineering (시스템엔지니어링을 이용한 턴키방식 플랜트 건설계약의 기술적 위험요인 효과적 분석 및 관리)

  • Hong, Dae Geun;Byun, Hee Chul;Suh, Suk-Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.59-69
    • /
    • 2014
  • In the bidding stage of turn-key based plant construction contracts, owners provide design and performance basis for contractors instead of giving design drawing. To win the bid for a plant construction, the contractors should be obliged to satisfy and ensure owners'requirements such as design and performance basis in a plant construction project, In other words, owners imposes technical risk of the design to the contractors by specifying responsibility for the analysis and verification of the plant construction. Thus, it is very important that contracters make accurate and realistic basic design plan in a short period of time. To deal with such a situation, we propose a systems engineering approach for the analysis and management of the technical risk. Specifically, we first: 1) Analyzes technical risk related with the plant design information for the bidders, followed by 2) Developing stakeholder requirements for the basic engineering design, and 3) System requirements for dealing with technical risk. Also, in this paper, we proposed converting method from MOE(Measure of Effectiveness) to MOP(Measure of Performance) in the risk analysis. To show the effectiveness of the proposed method, we carried out a case study.

ANALYZING DYNAMIC FAULT TREES DERIVED FROM MODEL-BASED SYSTEM ARCHITECTURES

  • Dehlinger, Josh;Dugan, Joanne Bechta
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.365-374
    • /
    • 2008
  • Dependability-critical systems, such as digital instrumentation and control systems in nuclear power plants, necessitate engineering techniques and tools to provide assurances of their safety and reliability. Determining system reliability at the architectural design phase is important since it may guide design decisions and provide crucial information for trade-off analysis and estimating system cost. Despite this, reliability and system engineering remain separate disciplines and engineering processes by which the dependability analysis results may not represent the designed system. In this article we provide an overview and application of our approach to build architecture-based, dynamic system models for dependability-critical systems and then automatically generate dynamic fault trees (DFT) for comprehensive, tool-supported reliability analysis. Specifically, we use the Architectural Analysis and Design Language (AADL) to model the structural, behavioral and failure aspects of the system in a composite architecture model. From the AADL model, we seek to derive the DFT(s) and use Galileo's automated reliability analyses to estimate system reliability. This approach alleviates the dependability engineering - systems engineering knowledge expertise gap, integrates the dependability and system engineering design and development processes and enables a more formal, automated and consistent DFT construction. We illustrate this work using an example based on a dynamic digital feed-water control system for a nuclear reactor.

A Management Performance Measurement Model of the Construction Engineering Firm -Focused on 'H' Construction Engineering Firm- (건설엔지니어링 기업의 경영성과측정모형 -H사의 사례를 중심으로-)

  • Park Chan-Sik;Kim Hyun-Jun;Jeon Yong-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.202-210
    • /
    • 2004
  • Under the current competitive business environment, the complexity of procurement method, and the lack of engineering capacity in the construction engineering industry, a construction engineering firms require the business strategy and its performance measurement system. This study suggests a performance measurement model that could follow 'H' construction engineering firm's vision and strategy. The model utilizes the concept of Balanced Scorecard. The study proposes the four main performance perspectives such as financial, growth, internal efficiency, and improvement & learning through the long-term strategy analysis, SWOT analysis, and interviews of the employees. Also the study develops the critical success factor and the key performance indicators. The usefulness of the performance measurement model is validated through the gap analysis such as alignment analysis and consensus analysis.