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Dependability-critical systems, such as digital instrumentation and control systems in nuclear power plants, necessitate
engineering techniques and tools to provide assurances of their safety and reliability. Determining system reliability at the
architectural design phase is important since it may guide design decisions and provide crucial information for trade-off
analysis and estimating system cost. Despite this, reliability and system engineering remain separate disciplines and
engineering processes by which the dependability analysis results may not represent the designed system.

In this article we provide an overview and application of our approach to build architecture-based, dynamic system models
for dependability-critical systems and then automatically generate dynamic fault trees (DFT) for comprehensive, tool-
supported reliability analysis. Specifically, we use the Architectural Analysis and Design Language (AADL) to model the
structural, behavioral and failure aspects of the system in a composite architecture model. From the AADL model, we seek to
derive the DFT(s) and use Galileo’s automated reliability analyses to estimate system reliability. This approach alleviates the
dependability engineering — systems engineering knowledge expertise gap, integrates the dependability and system engineering
design and development processes and enables a more formal, automated and consistent DFT construction. We illustrate this

work using an example based on a dynamic digital feed-water control system for a nuclear reactor.

KEYWORDS : Dynamic Fault Trees, Architecture Description Languages, Fault Tree Synthesis, Reliability Analysis, Dynamic System Modeling.

1. INTRODUCTION

Dependability-critical systems require the engineering
techniques and tools to provide high assurances of their
safety and reliability. Similarly, software-intensive systems
are increasingly becoming essential to dependability-
critical infrastructure requiring dependability engineering
techniques to sufficiently analyze the impact of the
hardware and software (as well as their interactions and
interfaces) on its overall reliability and safety. Despite
the acknowledged need for high assurance in dependability-
critical infrastructure software systems, such as the
Digital Feed-Water Control System (DFWCS) for a
nuclear reactor used in this work [1], the engineering for
these systems focus design and development efforts on
the functional behavior required of the system under
normal operating conditions and given environmental
assumptions such that consideration of failure scenarios
may be delayed until after the design is completed.

Dependability engineering entails calculating module
and system failure rates [2-5]; modeling fault and failure
propagations [6-8]; determining failure modes and
contingencies; developing diagnostic, prognostic and
system health monitoring and management mechanisms
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[9-12]; and designing for recovery, reconfiguration and
reconstitution strategies to handle operational faults and
failures [13]. Such dependability engineering technologies
need to be developed and incorporated early in design
and development process to allow for ample consideration
of possible failures, mitigation strategies, tradeoff analyses
and economic considerations.

Dependability engineers typically perform the
dependability analysis manually based on informal
software engineering assets including design models,
architecture diagrams and requirements documents. This
manual process places the onus of creating and analyzing
the dependability engineering assets and on the dependability
engineers and thus is subject to the skill and expertise of
the engineer [4] [14]. Fault tree analysis is a common
dependability engineering technique that is subject to
inconsistency since engineers can develop differing, but
accurate, fault trees for the same system [4] [14-15]. To
resolve differences among engineers, a system’s final
fault tree often must be resolved through review and
consensus building among dependability and system
engineers to ensure that the fault tree reflects the actual
system [14]. Further, the burden of manually identifying
and exposing the potential failure modes in the interactions
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among system components is a complex task that can
result in missing/unaccounted failure scenarios in the final
fault tree(s).

Dynamic fault trees are an extension to traditional
fault trees that allow for dynamic system events (e.g.,
functional dependencies, sequence-dependent failures,
spares, etc.) when modeling the possible failures of a
critical system [2] [4] [13] [16]. Like fault tree analysis,
dynamic fault trees provide the capability to qualitatively
and quantitatively analyze the failure scenarios of a critical
system. Galileo, used in this work, provides tool support
for traditional, static fault trees and dynamic fault trees and
provides numerous reliability analyses to the engineer [17].

In this article, we attempt to bridge the divide between
dependability and system engineering. We describe our
approach to build architectural-based, dynamic system
models for dependability-critical systems, such as DFWCS,
and then automatically derive the dynamic fault trees for
further reliability analysis using Galileo. We first describe
how the Architectural Analysis and Design Language [6]
[18-20] can be utilized to model the structural, behavioral
and failure aspect of a critical system in a composite
architecture model. From this model, we describe how a
dynamic fault tree can be automatically derived, and
then, finally, we detail the use of Galileo’s automated
reliability analyses to estimate system reliability. The
contribution of this is an approach that alleviates the
dependability engineering — system engineering gap by
integrating dependability engineering into the design and
development process of a critical system and enabling a
more formal, automated and consistent dynamic fault
tree analysis.

2. RELATED WORK AND BACKGROUND

The work presented here builds upon recent work in
the architectural modeling of a critical system using the
Architectural Analysis and Design Language as well as
our work in probabilistic risk assessment using dynamic
fault trees and its tool support, Galileo. We discuss this
previous work along with other related work to provide
the context and background for the work presented in
Section 3.

2.1 The Architectural Analysis and Design

Language

We utilize the Architectural Analysis and Design
Language (AADL) [6] [20], a Society of Automotive
Engineers (SAE) standard [21], to model, specify and
analyze the structural, behavioral and failure aspects of a
real-time, critical system using graphical and/or textual
notations. AADL was specifically designed to model “real-
time embedded systems, complex systems of systems,
and specialized performance capability systems” [6] and
is thus applicable to nuclear domain systems, such as the
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Digital Feed-Water Control System (DFWCS) used in
this article. In addition, to allow for the generation of
dynamic fault trees (DFT) from the specified AADL models,
we use AADL’s Error Model Annex [22], a companion
language to AADL that support the specification of fault
and failure information and propagations to system
components. The use of AADL’s Error Model Annex
facilitates the generation of system fault trees since it
allows for the specification of fault/failure annotations
directly integrated into the original architecture model [6]
[22]. This ensures that the fault/failure scenarios accurately
reflect the designed system at an early stage in the
development lifecycle and enables the dependability
analysis to consider the component fault/failure scenarios
and their interactions in the context of the system
architecture [14].

While this work proposes and focuses on deriving
DFTs from the AADL model, the combination use of
AADL and its Error Model Annex has been used for other
dependability engineering activities. AADL has been
previously used as a validation and verification model for
dependability-critical systems using various approaches
and case studies including scheduling analysis on complex
avionics systems [18], a Generalized Stochastic Petri Net
model derived directly from an AADL model [7-8],
model-driven fault tolerance design [22], security level
analysis and memory buffer analysis on a queuing system
[24]. This work will build upon these approaches by
providing further dependability engineering processes
and methods for AADL models and will improve the
utilization of AADL as an engineering tool in dependability-
critical domains.

2.2 Dynamic Fault Tree Analysis and Galileo

Fault trees are a graphical representation of a system
hazard depicting the underlying causal events using
Boolean logic gates and are used to reason about and/or
quantifiably estimate the potential cause(s) of a system
failure [2] [15]. Fault tree analysis is a backward search
technique that starts from a system failure and works
towards the initiating events (i.e., the causing events that
may lead to the system hazard/failure) [15]. Dynamic
fault trees (DFT), developed by Dugan et al. [2] [4] [13],
are an extension of traditional fault trees that utilizes
Markov chains to provide for dynamic system events
(e.g., functional dependencies, sequence-dependent
events, spares, etc.) when modeling the possible causal
events of a root node, system hazard.

Coppit, Sullivan, Dugan and others developed
Galileo as the tool support for developing and analyzing
both traditional, static fault trees and DFTs [16-17].
Further, Galileo enables for multiple reliability analyses
(e.g., uncertainty analysis, common cause groups, cutset
generation, phased-mission modeling and analysis, etc.)
to quantifiably estimate the system probabilistic risk
assessment (PRA).
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More recently, Dugan, Pai and Xu have used dynamic
event/fault trees (DEFT) to improve the expressiveness
of DFTs. DEFT combines event trees, a decision tree that
graphically represent how an initial perturbation or event
can propagate forward to result in a mitigating or
aggravating possible outcome(s) [15], with DFTs [2]. The
DEFT represents a tree that can terminate in either success
and/or failure scenarios and allows for the modeling and
identification of dependencies affecting system components,
dependencies between components and the relationship
between system components and software in the context
of a PRA [2).

This article builds upon earlier work by utilizing a
DEFT and its associated DFTs and performing a PRA
using Galileo and complements it by allowing for the
automatic generation of a DFT directly from a critical
system’s architectural model to ensure the dependability
analysis accurately reflects the design.

2.3 Linking Fault Trees and System Design
Diagrams

This work uses the Architectural Analysis and Design
Language {AADL), described in Section 2.1, to model a
critical system and then derive the relevant dynamic fault
trees (DFT) to perform probabilistic risk assessment using
Galileo, described in Section 2.2. While our approach is
novel, related comparable research exists that compliments
the work presented in this article.

Pai and Dugan provided some initial work similar to
that presented here by generating DFTs from specially
annotated UML models [4]. Although the goal is similar,
their work relies on specialized UML semantics and is
dependent on a particular UML modeling toot that can
not model the critical systems concerned in this work.
Unlike [4], we advocate for the use of AADL to model
critical systems because it: 1. allows for the specification
of a system’s structure, behavior and potential
faults/failures within the system model; 2. enables and
supports other dependability analyses, described in
Section 2.1; and, 3. provides a formal, standardized
model-based, architectural language specifically for real-
time, critical systems.

Sun, Hauptman and Lutz in developed a tool to
manually associate a user-built, product-line software
fault tree analysis [25] with the related product-line
AADL models with the intention of extending the scope
of early safety analyses into the architecture stage of
system development [26]. The work presented in this
article differs from that of [26] in that we advocate for
the automatic derivation of DFTs directly from the AADL
architectural model to ensure the accurate reflection of
the system in the dependability analysis and to enable
comprehensive PRA by including dynamic events.

Most relevant to this work, Joshi, Vestal and Binns
developed the process of automatically deriving static fault
trees from ADDL models [14]. In this article, we extend
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their work to allow for the derivation of DFTs from an
AADL model so that a probabilistic risk assessment,
using Galileo, can be performed to estimate the reliability
of a critical system. The generation of DFTs as outlined
in this article, rather than static fault trees as in [14], is
advantageous in that the DFT can better reflect the faults,
spares and repair/recovery properties found in high
assurance systems.

3. MODELING CRITICAL SYSTEMS USING AADL

In this article, we advocate for the use of the
Architectural Analysis and Design Language (AADL)
[6] [20] as the medium for specifying and modeling the
structural, behavioral and failure characteristics of a
dependability-critical system. The motivation is, from the
architectural model specified in AADL, we propose (see
Section 4) how dynamic fault trees can be automatically
generated and then analyzed for the systems probabilistic
risk assessment, see Section 5. In this section however,
we give a brief overview of AADL and how it can be
used to specify/model the critical components of a
Digital Feed-Water Control System (DFWCS) [1] for a
nuclear power plant; for a full description of AADL,
interested readers should consult [6] [20].

3.1 Modeling a System Architecture in AADL
Overview

In the Architectural Analysis and Design Language
(AADL), system components serve as the main construct
in specifying the architecture of a system. AADL system
components are partitioned into two distinct types:
software components and execution platform components
[20]. Software components include architectural
structures for processes, threads, thread groups, data and
subprograms. Execution platform components include
architectural structures for processors, memory and
buses. Using these software and execution platform
components, a system is then composed using the
composite system AADL architectural structure. AADL
defines required binding properties between AADL
software components and execution platform components
(e.g., all software threads must be associated with a
processor) to ensure a viable system.

AADL further defines system architectural components
through type and implementation declarations [20]. An
AADL component’s type declaration specifies its externally
observable attributes and interface elements, A component’s
interface elements include AADL features, defined
interaction points with other system components (e.g., data
input/output ports, event input/output ports, subprogram
calls, etc.), and properties, the inherit characteristics of a
system component (e.g., periodic/aperiodic intervals,
deadlines, etc.). A component’s implementation
declaration specifies its internal structure by declaring its
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DFWCS Moduie 2 — Main and Backup Controllers
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Fig. 1. Graphical AADL Model Excerpt of the DFWCS

subcomponents, connections, flows, modes and
properties. The combination of defining the components
types and implementation specification allows for the
creation of a system instance model in AADL that is
generated from the declarative models by the user
indicating an AADL system implementation as the root
of the system instance. AADL tooling then recursively
instantiates the defined subcomponents comprising the
system and the system instance is bound by identifying
the component’s defined binding properties (e.g., binding
software threads to processors).

In this work, we utilize the OSATE [27] to specify,
validate and analyze the AADL architecture models.
OSATE was developed by the Software Engineering
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Institute (SEI) and is an open source AADL Tool
Environment, built as a set of plug-ins for the Eclipse
platform. OSATE provides the interface for specification
of a system’s architectural model (both graphical and
textual interfaces), the parsing and semantic checking
capabilities to ensure validate AADL specifications and
the facility to generate a system’s bound System Instance
Model, an XML-based specification. OSATE was chosen
for this work because it provides the necessary processing
for AADL models while also enabling us to include the
generation of dynamic fault trees, proposed in Section 4,
into the OSATE tooling using its parsing, validation and
System Instance Model generation facilities.

In Figures 1 and 2, we provide a portion of the
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Fig. 2. Textual AADL Model Excerpt of the DFWCS

graphical and textual AADL models for the Digital Feed-
Water Control System (DFWCS) [1] for a nuclear power
plant example used here. Note that the graphical and
textual AADL models are identical equivalent and can be
generated from each other. The DFWCS system shown
in Figures 1 and 2 consists of two redundant digital
computer controllers, one main controller and one backup
controller, that receives various sensor inputs (e.g., water
temperature, reactor power, feed-water flow rate, etc.)
and provides control outputs to set the operating
positions of the main flow valve and bypass flow valve,
and the speed of the feed-water pump. The controller
outputs are first sent to a set of four Proportion, Integral
and Derivative (PID) controllers of which three are
dedicated to the main flow valve, the bypass flow valve
and the feed-water pumnp and the fourth PID controller
acts as a spare for either the main flow valve PID
controller or the bypass flow valve PID controller. The
PID controller associated with each of the controlled
devices performs a comparison of the requested setting
indicated by the main and backup controllers and then
delivers the final outputs to the controlled device.

3.2 Modeling Faults and Failure Propagations in
AADL Overview

The Architectural Analysis and Design Language’s
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(AADL) Error Model Annex allows for the specification
and analysis of potential failures and failure propagations
within the architectural diagram of a critical system [6].
The Error Model Annex of AADL allows for the
specification of fault models on individual components,
on the interaction between fault models through fault
propagations, rules determining when/how faults can
propagate among different types of system components,
fault filtering and/or masking failure modes and hierarchical
composition of component and subcomponent fault
models [14].

The AADL Error Model Annex allows for the
specification of potential component faults in a generic
error model, through the AADL type declarations, as well
as for specific component implementation declarations.
The specification of an error model for a component type
declaration is appropriate for common cause failures of a
component (e.g., common failure modes for a type of
sensor) and typically defines the failure modes (e.g., loss
of availability, loss of integrity, corrupt data, etc.), initial
error states, potential error events and input/output error
propagations [14]. Although not covered in this article,
specified error events in the error model can additionally
specify repair/reconfiguration events. The specification
of an error model for a component implementation
declaration is used to indicate the failure state transitions
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system implementation Modulel.impl
annex error model{**
model => Module3 PID.error;

occurrence = fixed 1E-4 applies to error fail_stop;
ovcurrence = fixed 1E-4 applies to error loss_of_avallability:

guard_in =>

mask when rcvdMainControllerValveSettinglerror freel ox
rcvdBackupControllerValveSetLing1erzorwfree],
corrupt_data when rovdMainControllerValveSetting{loss of integrity}] and
revdBackupControllervValveSetting{loss_of integrity]
applies to rovdMainControllerValveSetting, rovdBackupControllerValveSetting;

derived state _mapping =>

error_free when MainFlowvalvePID{error free] and BypassFlowvalvePIDlervor freel,

error_free when MainFlowvalvePID[error free] and SparePID[error free],

error free when BypassFlowValvePID[error free} and SparePID{error free],

ioss_of availability when MainFlowValvePID{loss_of availability] and
BypassFlowValvePID[loss_of availabilityl,

logs_of integrity when MainFlowvalvePiD[loss of integritry} and
BypassFlowvalvePID[loss _of_integrityl,

report => loss of availabiliity, loss of integrity:

b 3

subcomponents
MainFlowValvePID: device PID.impl;
SparePlD: device PID.impl;
BypassFlowvValvePlD: device PID.impl:
MainFlowValve: device FlowValve.impl;

BypassFlowValve: device FlowValve.impl;

end Moduled.impl;

Fig. 3. AADL Error Model Excerpt for the DFWCS

of a component (e.g., error free to loss of availability) and
is based on the failure events and propagations defined both
in the component’s type and implementation declaration.
Finally, failure occurrence probabilities (i.e., fixed, Poisson
and/or user defined failure rates), important for our
probabilistic risk assessment of the derived dynamic fault
tree in Galileo, can be associated with failure events.

Figure 3 provides a small excerpt of the AADL error
model specified for a portion Digital Feed-Water Control
System (DFWCS) AADL model, shown in Figures 1 and
2. The guard_in keyword specifies the guard conditions
for the input fault propagations and enables the particular
component to mask the fault at the receiving interface.
Following the guard_in property of the error model excerpt
given in Figure 3, we specify the possible failure states of
the component and the component’s subcomponents. For
example, Figure 3 specifies that, due to the presence of a
spare Proportion, Integral and Derivative (PID) controller
(i.e., SparePID in the AADL model), the Module3
component will be error free unless two of the three PIDs
fail. Finally, most relevant to this work, Figure 3
illustrates the use of the report keyword in AADL’s Error
Model Annex to indicate designated possible root nodes
for a fault tree.

4. GENERATING DYNAMIC FAULT TREES FROM
AADL MODELS

In this section, we describe our high-level approach
for automatically deriving dynamic fault trees (DFT)
from an Architectural Analysis and Design Language
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(AADL) model annotated with the appropriate/desired
error models. While the process described here is similar
to the approach of Joshi et al. in [14], it differs in that we
generate DFTs rather than static fault trees and thus must
additionally account for functional dependencies, sequence-
specific failures, spares, etc. In this article, we propose
the approach and plan on implementing this approach as
a plug-in into the existing OSATE [27] AADL tool,
described in Section 3.1, to ease the development of
DFTs to be analyzed using Galileo [16-17], discussed in
Section 2.2. Note that, the implementation of the DFT
generation described in this section is underway.

Our approach for automatically deriving DFTs from
an AADL model will consists of three high-level steps: 1.
system instance error model extraction; 2. intermediate
fault tree generation; and, 3. dynamic fault tree augmentation
and generation. We briefly discuss each of these steps
before describing the use of a DFT using Galileo.

As described in Section 3.1, the specification of an
AADL model and the declaration of a system results in a
System Instance Model. However, because of a deficiency
in the OSATE tooling, the associated error models are
not also included into the System Instance Model and
thus, some preprocessing is needed to extract the error
model to generated a System Instance Error Model. Within
the System Instance Model, there are component
instances (e.g., processors, systems, devices, etc.) and
connection instances (e.g., bus connections, data
connections, etc.). In both cases, an error model can be
directly linked to a component and/or connection
instance the Error Model Annex’s model construct (see
Figure 3) and can be retrieved directly from the instances.
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If, however, there is no associated error for a connection
instance, the error model of the source applies to the
connection instance. For a component instance, the
derived_state mapping, model hierarchy, and guard in
AADL Error Annex constructs additionally need to be
retrieved to derive the proper system instance error
model. For a connection instance, the eccurrence AADL
Error Annex property additionally needs to be retrieved
to derived the proper system instance error model. Finally,
the error propagations need to be determined for the
component and connection instances. Direct propagations
are determined as those error propagations that occur via
port connections (i.e., resulting from the error model of
the connection of the connected component instance.
Indirect propagations are determined from other component
instances through access connections or from binding
properties {e.g., a software process bound to a processor).

Following the extraction of the System Instance Error
Model, the system and its associated error model is
stored in an XML-like file such that the information is
stored in the nodes of a directed graph. For component
instances with a derived error model, a node’s edge
points to all the hierarchically contained subcomponents.
For component instances with abstract error models (i.e.,
error models defined on the component type) and
connection instances, the node’s edge points to all the
components that may be a source of their input error
propagations. Consequently, the error propagation paths
can lead to potential cycles in the directed graph that
result in the use of a functional dependency (FDEP)
dynamic gate in a DFT.

The final step in generating a DFT from the AADL
model involves identifying the root node(s) of interest
and deriving the DFT from the directed graph of the
previous step. As mentioned in Section 3.2, the AADL
Error Model Annex provides the report keyword to
denote error events that should be reported. For example,
in the Digital Feed-Water Control System (DFWCS)
error model shown in Figure 3, a candidate DFT root
node could be “Module3 loss of availability” to indicate
that the PID controllers, components of Module3, failed
to command the water flow valves.

These high-level steps will enable the generation of a
DFT that, after being properly formatted to be compatible
with Galileo, can be loaded and can be analyzed to
estimate the critical system’s probabilistic risk assessment.
The following section describes the use of Galileo for
analyzing DFTs.

5. ANALYZING DYNAMIC EVENT/FAULT TREES
USING GALILEO

In this section, we provide an overview of the
analysis capabilities of the dynamic fault tree (DFT) and
Galileo that motivate us to develop the ability to
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automatically generate DFTs from a critical system’s
architecture model. First, however, we examine the
dynamic event/fault tree (DEFT) as a guide in developing
the error models for the architecture model specified
using the Architectural Analysis and Design Language’s
(AADL) [6] [20] Error Model Annex and how the DEFT
can guide the probabilistic risk assessment of a critical
system. Note that readers interested in a full discussion
of these dependability engineering techniques and tools
should consult {2] [4] [13] for DFT analysis, [16-17] for
further information on Galileo and [15] for DEFT analysis,
respectively.

5.1 Modeling System Faults/Failures using
Dynamic Event/Fault Trees

The dynamic event/fault tree, described in Section
2.2, combines the use of event trees [15] and dynamic
fault trees (DFT) [2] and can be used as a part of a critical
system’s probabilistic risk assessment (PRA). Event trees
and DFTs compliment each other and their combination,
the DEFT, better captures dynamic system events [2].
Further, we found that the development of a DEFT aided
in the identification of possible system component failure
modes and the development of the error models for the
system architecture.

Using the Digital Feed-Water Control System
(DFWCS), described in Section 3 and specified in Figures
1-3, Figure 4 illustrates a DEFT for the initiating event
(IE) “module?2 sends new flow valve setting to module3”
to represent the event of the DFWCS when the main and
backup controllers send a flow valve setting to the flow
valve Proportion, Integral and Derivative (P1D) controllers
(see Figure 1). This IE is of interest to the DFWCS and
was developed as a DEFT to investigate the possible
failures, and their potential results, for the critical function
of setting the water flow valves as commanded by
controllers and PID controllers.

The resulting DEFT illustrates the pivot events (PE)
and the possible outcomes of the IE. A PE of the DEFT
is an event that is the occurrence or non-occurrence of
the event and indicates the root node of a possible fault
tree (denoted as DFT1-DFTS5 in Figure 4). From the IE,
the DEFT branches into two (or more) outcomes, denoted
as PEL: “received controller data comparison™ to mark
the event that the flow valve PIDs received the commands
and data from the controliers and will compare them to
ensure integrity and accuracy. The resulting paths are
then repeatedly evaluated against other PEs that can
occur within the system, marked as PE2-PES5 in Figure 4,
to guide the analysis of a systems critical functionality.
This process results in a set of possible outcomes that
may be failure or non-failure system states.

The development of the DEFT for the DFWCS
utilized the Architectural Analysis and Design Language
(AADL) model, shown in Figure 1, to identify the system
components, the data/event connections and the data/event
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Fig. 4. DEFT Excerpt for the DFWCS

flows (not discussed in this paper due to space constraints)
involved in the IE and PEs. The development of the
DEFT using the AADL model can help guide the
development of the AADL component’s error model
specifications in that the PEs identify possible error
states (e.g., loss of availability, loss of integrity, fail stop,
etc.) for the components of the system and provides a
high-level view of the failure propagations that can then
be specified in the AADL error model. Further, the PEs
of the DEFT provide possible events that could be
developed as a fault tree and may indicate which failure
states for a system component warrants the use of the
report keyword of AADL, discussed in Sections 3.3 and
4, and the possible generation of a DFT.

Figure 5 provides an excerpt of the DFT developed
from the DEFT of the DFWCS shown in Figure 4.
Specifically, the DFT models the events PE2 (right subtree
of Figure 5) and PE3 (lefi subtree of Figure 5) and denoted
at DFT2 and DFT3 in Figure 4, respectively. The
resulting DFT describes the causal failure events that can
lead to the “loss of availability” failure mode of Module3,
as indicated as the desired DFT root node in the AADL
error model shown in Figure 3. Similarly, the DFT is the
result of the analysis of the system’s AADL architecture,
shown in Figures 1 and 2, using the process described in
Section 4. Thus, the leaf nodes in the DFT for the DFWCS
coincide with the failure modes described in the AADL
error model. For example, the DFT leaf node
“MainFlowValve” of Figure 5 results from a “fail stop”
error state described the MainFlowValve’s AADL
component error model.

5.2 Estimating and Improving the Probabilistic Risk
Assessment of a Critical System

The capability to indentify the critical events, data
and components of a dependability-critical system, such
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as the Digital Feed-Water Control System (DFWCS) used
in this article, is essential to: 1. discover unanticipated or
unknown critical system components and data/events that
may lead to undesirable and possible unsafe system
outcomes; 2. enable the greater understanding of the
behavior, interaction, data and functionality of system
components specified in the Architectural Analysis and
Design Language (AADL) model; and, 3. determine
and/or verify failure masking/mitigation strategies to
quantifiably improve the critical system’s reliability.

The dynamic event/fault tree (DEFT) shown in Figure
5 presents five pivot events (PE) that can be associated
with DFTs to model and analyze the potential failures
contributing to the DEFT outcomes (see Figure 4). For
quantitative analysis, the DFTs modeled for the PEs in
the DEFT provide the probability of an outcome at a
given PE (ignoring the common cause failures, dependences
between the DFTs and imperfect DFT failure coverage).
For example, the probability of the loss of availability of
the Flow Valve Proportion, Integral and Derivative (PID)
controllers, shown in Figures 1 and 2, can be calculated from
the associated DFT. The development of the DEFT along
with the specification of a critical system’s architecture
and failure model, as described in Section 3, and buttressed
by the capability of deriving the DFT directly from the
AADL model, described in Section 4, will better enable the
use of Galileo [16] [17] to calculate the probabilities of
each PE, if desired, in the DEFT. By doing so, we can
estimate the probability of each outcome in the DEFT as
the products of each PE outcome along its path [2].

The capability of estimating the DEFT’s outcome
probabilities, assisted by Galileo, allows for dependability
engineers to: 1. better partition resources into which DEFT
system outcomes should be further investigated/analyzed
using alternate dependability engineering techniques and
tools; 2. a quantifiable estimate of the possible outcomes
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of an initiating event (IE); and, 3. document the evidence
of failure outcomes and analysis given initial faults when
certification and/or a dependability audit is required.

6. CONCLUDING REMARKS AND FUTURE WORK

This article advocated and demonstrated for the use
of the Architectural Analysis and Design Language (AADL)
as a medium to model the architecture and faults and
failure propagations of a dependability-critical system and
as a mechanism to more accurately reflect the actual system
design and architecture in the dependability analysis. To
support this, we outlined our approach to enable the
generation of dynamic fault trees (DFT) from AADL
models annotated with associated error models to enable
probabilistic risk assessment of the DFTs using the Galileo
tool. In doing so, the main insights of this article include:

- An illustration of how AADL can be utilized to specify
and model the structural, behavioral and failure
characteristics of a dependability-critical system
composed of software and hardware components

+ A description of our approach to enable the automatic
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derivation of DFTs from the specified AADL model

- An overview of the dependability analysis facilities of
using Galileo for a probabilistic risk assessment of a
critical system using a dynamic event/fault tree and DFTs

The intention of this work is to assist in closing the
dependability engineering — system engineering gap by
integrating dependability engineering into the design and
development process of a critical system and enabling a
more formal, automated and consistent DFT analysis.

While this is an important step in bridging the gap
between system engineering and dependability engineering
to produce better dependability assessments of the actual
designed system, additional work following this article
remains to be addressed and explored. In particular:

- Implementation and demonstration of the tooling
described in Section 4 to enable the automatic generation
of DFTs from AADL models and their use with Galileo

- Development of an intuitive interface, such as the use
of a Failure Modes, Effects and Criticality Analysis [15],
for dependability engineers to ease the specification of
the AADL’s error model to blunt the needed AADL
domain expertise

- Investigation on how additional dependability engineering
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techniques and tools can be used in conjunction with
AADL; in particular, those techniques based on Markov
Chains as they are compatible with AADL and could
be generated from the derived System Instance Error
Model, described in Section 4
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