• Title/Summary/Keyword: Engine control module

Search Result 83, Processing Time 0.02 seconds

A Development Study on an Engine Control Module of an Electronic Marine Diesel Engine (전자식 선박디젤엔진의 엔진제어기 개발/연구)

  • Sim, Han-Sub;Lee, Min-Kwang;Lee, Kang-Yoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.134-140
    • /
    • 2015
  • A control program of an engine control module (ECM) was developed, and its control performance was verified on a 750Ps marine diesel engine. The control method was designed for an engine rotational speed control system. For ECM hardware, the commercial rapid control prototype (RCP) ECM was used. The programming tool for control algorithm development was the MatLab/Simulink. The main control algorithm assembled many control models as engine cranking, run, and stall. Each model has sub-models to input/output control signals. The target engine speed was input signal from a speed control lever, and control output signal of the ECM was sent to the unit-injectors for fuel injection. The engine test was performed under various conditions of engine rotational speeds and dynamometer loads. The test results show that the control function of the ECM is suitable for electrical marine diesel engines.

A Study on the Development of Digital Governor for Medium Speed Diesel Engine (중속디젤 기관용 디지털 조속기 개발에 관한 연구)

  • 유영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.693-699
    • /
    • 1999
  • In this paper author develops digital governor for medium speed diesel engine. The system is composed of MPU main control module RPM measuring module PWM driving module driver module for F.O. rack drive motor key pad and display module. Experiment results of speed control on 6cyl 1800pm 250kw Daewoo MAN diesel erigine were satisfied for design speci-fications and system could be developed for commercial usage after taking more experiments and endurance tests under various environments.

  • PDF

Development of An Engine Modeling and an Engine Control Module for an LPG Engine (LPG 엔진 모델링 및 ECM 설계에 관한 연구)

  • 심한섭;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.1-9
    • /
    • 1999
  • Liquid Petroleum Gas (LPG) has been widely used for commercial light-duty vehicles worldwide. Since LPG has a higher octane number and a lower maximum combustion temperature than gasoline , it becomes more popular fuel for reducing exhaust emissions. In tihs study, mathematical models of air intake and fuel delivery system are presented, and a PI-controller is designed for air-fuel ratio control. Hardware and software of an engine control module (ECM) are designed for an LPG engine. The ECM is built using a Motorola MC68HC05. In order to control the air-fuel ratio at stoichiometry, the PI-control algorithm is implemented in the ECM. The experiment results show the proto LPG ECM and its control scheme perform well to meet the stoichiometric air-duel ratio requirement.

  • PDF

Design of Hall Sensor based Electronic Engine Cooling System (홀 센서 기반 전자식 엔진냉각제어 시스템 설계)

  • Koh, Young-Ho;Kim, Hyun-Hee;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.325-332
    • /
    • 2017
  • The engine cooling system is a device that maintains the temperature in the engine room at an appropriate level by driving a cooling fan when the temperature in the engine room generated during the vehicle operation occurs over a certain temperature. In recent years, the vehicle cooling system has changed to an electronic system. Therefore, in this paper, we design and develop a hall sensor based electronic engine cooling system. In this paper, a hall sensor module and an actuator module for engine cooling control system are designed. In order to verify the performance of the designed module, the magnetic field control was verified through the simulation of the diameter and the head of the coil.

Development of an operation and control software for electro-hydraulic (전자유압식 CVT의 운용 및 제어 소프트웨어 개발과 실시간 제어)

  • Kwan, H. B.;Kim, K. W.;Kim, H. S.;Eun, T.;Park, C. I
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.36-46
    • /
    • 1993
  • In CVT vehicle, the engine speed is completely decoupled from the vehicle speed within the range from maximum transmission ratio to minimum transmission ratio. This allows the engine to operate in optimal state(e.g. best fuel economy or maximum power mode.) In this study, the CVT control algorithm for optimal operation of engine is suggested. In order to implement the real time digital control of electro-hydraulic CVT system, a software called CVTCON has been developed. CVTCON also includes the CVT operation module, (2) system test module, (3) system control module and (4) data management module. By using the CVTCON and the electro-hydraulic CVT system, two modes of experiments were carried out: constant throttle opening mode and acceleration mode. From the experimental result, it was found that the algorithm suggested in this study showed optimal operation of the CVT system.

  • PDF

Development of Operating Program for EECU Test Bench

  • Kang, Myoungcheol;Kho, Seonghee;Ki, Jayoung
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.10-15
    • /
    • 2014
  • This study presents technical description of the operating program development that operates the test bench for functional test of EECU. The test bench is capable of testing, simulation and adjustment of the EECU software using the operating program. The test bench is for the Development Project of the EECU platform for FADEC system. The operating program is consists of 3 modules which are the test bench operating module, cockpit simulator module and SILS module. The operating module mainly carries out the EECU test with manual operation and operating scenarios. Also that record and process the test data. The cockpit simulator module is capable of implementation of virtual cockpit control input and engine status display. The SILS module can simulate engine and EECU operation in software environment.

Fault Diagnosis in Gas Turbine Engine Using Fuzzy Inference Logic (퍼지 로직 시스템을 이용한 항공기 가스터빈 엔진 오류 검출에 대한 연구)

  • Mo, Eun-Jong;Jie, Min-Seok;Kim, Chin-Su;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.49-53
    • /
    • 2008
  • A fuzzy inference logic system is proposed for gas turbine engine fault isolation. The gas path measurements used for fault isolation are exhaust gas temperature, low and high rotor speed, and fuel flow. The fuzzy inference logic uses rules developed from a model of performance influence coefficients to isolate engine faults while accounting for uncertainty in gas path measurements. Inputs to the fuzzy inference logic system are measurement deviations of gas path parameters which are transferred directly from the ECM(Engine Control Monitoring) program and outputs are engine module faults. The proposed fuzzy inference logic system is tested using simulated data developed from the ECM trend plot reports and the results show that the proposed fuzzy inference logic system isolates module faults with high accuracy rate in the environment of high level of uncertainty.

Case Study of Intermittent Engine Hesitation Fault Diagnosis By CKPS Fault (LPI차량에서 CKPS불량으로 주행 중 간헐적인 엔진부조 현상의 고장진단)

  • Kim, Sung Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.624-629
    • /
    • 2014
  • The purpose of this study is to carry out the task of engine hesitation which occurred intermittently in driving due to the defective CKPS of LPI vehicles. As the result of the wrong data from the equipment of D-logger, the signal error of CKPS caused the engine hesitation. We performed a study in the followings to analyze and investigate the cause effectively. First, we have investigated the control wiring harness and connector pin contact defect inspection. Second, we have inspected the defection of CKPS separately. From this study, it was found that the engine hesitation were caused by the bad durability and we have showed how to diagnosis the fault of the engine hesitation intermittently while driving. Therefore, it is determined that we have to improve the durability of the CKPS through a strict quality control and to increase the reliability.

Marine Engine State Monitoring System using DPQ in CAN Network (CAN의 분산 선행대기 열 기법을 이용한 선박 엔진 모니터링 시스템)

  • Lee, Hyun;Lee, Jun-Seok;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • This paper proposes a marine engine state monitoring system using a DPQ (Distributed Precedence Queue) mechanism which collects the state of bearings, temperature and pressure of engine through the CAN network. The CAN is developed by Bosch Corp. in the early 1980' for automobile network. The data from various sensors attached in the marine engine are converted to digital by the analog to digital converter and formatted to fit the CAN protocol at the CAN module. All the CAN modules are connected to the SPU (Signal Processing Unit) module for the efficient communication and processing. This design reduces the cost for wiring and improves the data transmission reliability by recognizing the sensor errors and data transmission errors. The DPQ mechanism is newly developed for the performance improvement of the marine engine system, which is demonstrated through the experiments.

Development and Optimization of Engine Module for Hybrid System Simulator (하이브리드 시스템 시뮬레이터용 엔진 모듈 개발과 최적화에 관한 연구)

  • Jeon, Dae-Il;Gong, Ho-Jeong;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.14-22
    • /
    • 2010
  • Hybrid Electronic Vehicle (HEV) is one of the solutions of high oil price and environment problem. Recently, study of HEV is important for automobile industry. However HEV has a lot of components and there are many cases for assembling, it's impossible to test results from assembling by using real vehicles. To solve this problem, hybrid system simulator is required. The purpose of this study is to develop and optimize of engine module for hybrid system simulator. The commercial 1-D engine simulation program, WAVE is used to get the engine capacity and performance data and 1-D simulation model of base engine is compared with engine experiment results. Using the data, the engine module is developed based on the MATLAB Simulink. There are blocks of base engine, Single-CVVT engine and Dual-CVVT engine. The effect of acceleration and deceleration is applied to each engine block. In addition, the control and processing logics for CIS technology are developed. Finally the simulator operates FTP-72 mode test.