• Title/Summary/Keyword: Engine Cases

Search Result 337, Processing Time 0.023 seconds

Investigation on the Comparison of Exhaust Emission Characteristics of Passenger Cars using LPG and Diesel Fuel in Variation of Driving Mode and Ambient Conditions (주행모드 및 조건변화에 따른 LPG와 디젤승용차량 배출특성 비교에 관한 연구)

  • Kim, Hyung Jun;Lee, Jongtae;Seo, Youngho;Hong, You Deug
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.185-189
    • /
    • 2017
  • In Korea, sales of passenger cars using diesel and LPG fuels were continuously increased in recent years. From now on 2030, the registrated vehicles will close in about twenty five million in Korea. From these reason, Investigation on the comparison of exhaust emission characteristics of passenger cars using LPG and Diesel fuel in variation of driving mode and ambient conditions were conducted in this study. Exhaust emission characteristics of test vehicles were measured and analyzed by using chassis dynamometer and emission analyzer. Also, test vehicles were selected on the diesel vehicle with 1.7L engine and LPG vehicle with 2.0L engine. In order to study on emission characteristics according to driving cycles, CVS-75, NEDC, US06, SC03, Cold-FTP and HWFET were applied and the test conditions were set up the cases of A/C on and hot start. From these results, it is revealed that the NOx emission of diesel vehicle was higher than that of LPG vehicle and the case of CO emission shows the opposite patterns. In the HC emission, the emission increasing patterns not showed but the NOx emission of diesel vehicle and CO emission of LPG vehicle were showed the variation patterns according to the various driving modes.

WCDMA Simulator Engine for 3G Wireless Network

  • Rashld Zainol Abidin Abdul;Ramaiah Karamchand Babu Atchitha
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.3
    • /
    • pp.36-47
    • /
    • 2003
  • Wideband Code Division Multiple Access (WCDMA) is one of the air interface techniques proposed for the third generation (3G) mobile communication system. WCDMA was selected because it fulfills the IMT-2000 requirements for higher data rate trans mission, support of multimedia capabilities and other flexible services due to its variable bit rates and larger bandwidth, improved capacity and coverage, efficient power control and support for advanced and improved detector structures. Performance evaluation of 3G wireless network through simulation plays an important role in the design and implementation of the actual system, aiding the wireless system designer by providing them the necessary performance conformance statistics prior to implementation. In accordance with this goal, a simulator engine was developed entirely on a MATLAB platform to emulate the behaviour of the WCDMA air interface for both the uplink and downlink in a real world fading mobile environment. This paper discuss the development of the simulator along with a brief description of its functionalities and user interface. The WCDMA air interface mode focused in this paper is in accordance to the 3GPPs frequency division duplex (FDD) mode and restricted to the physical layer description. Performance results for the selected cases for the downlink, uplink, varying mobile velocity and sampling rates are also provided.

  • PDF

Predictions of Fatigue Life of Copper Alloy for Regenerative Cooling Channel of Thrust Chamber (연소기 재생냉각 채널용 구리합금의 피로수명예측)

  • Lee, Keumoh;Ryu, Chulsung;Heo, Seongchan;Choi, Hwanseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.73-82
    • /
    • 2017
  • Low-cycle thermal fatigue problem resulting from multiple use of a liquid rocket engine has to be considered for the development of a reusable launch vehicle. In this study, life prediction equations suggested by previous researchers were compared as applied to various copper alloy cases to predict fatigue lives from tensile test data. The present study has revealed that among the presently considered life prediction methods, universal slopes method provides the best life prediction result for the copper alloys, and the modified Mitchell's method provides the best life prediction result for oxygen free high conductivity (OFHC) copper.

Flow Analysis in the Fuel Chamber of Engine by Applying Turbulent Models (난류모형을 적용한 엔진 연료실의 유동해석)

  • Kwag Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.369-374
    • /
    • 2006
  • The flow analysis was made by applying the turbulent models in the complicated fuel chamber of engine. The $k-\varepsilon,\;k-\omega$, Spalart-Allmaras and reynolds stress models are used in which the hybrid grid is applied for the simulation. The velocity vector, the pressure contour, the change of residual along the iteration number, and the dynamic head are simulated for the comparison of four example cases. Computational results are compared with others. For the code's validation, 2-D bodies were simulated in advance by predicting the drag coefficients.

Development of the Pattern Matching Engine using Regular Expression (정규 표현식을 이용한 패턴 매칭 엔진 개발)

  • Ko, Kwang-Man;Park, Hong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2008
  • In various manners, string pattern matching algorithm has been proven for prominence in speed of searching particular queries and keywords. Whereas, the existing algorithms are limited in terms of various pattern. In this paper, regular expression has been utilized to improve efficiency of pattern matching through efficient execution towards various pattern of queries including particular keywords. Such as this research would enable to search various harmful string pattern more efficiently, rather than matching simple keywords, which also implies excellent speed of string pattern matching compared to that of those existing algorism. In this research, the proposed string search engine generated from the LEX are more efficient than BM & AC algorithm for a string patterns search speed in cases of 1000 with more than patterns, but we have got similar results for the keywords pattern matching.

Numerical Analysis of Flow Characteristics in Swirl Chamber Type Diesel Engine (연락공 형상에 따른 와류실식 디젤기관의 유동 특성 수치해석)

  • Kwon Taeyun;Choi Gyeungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.49-57
    • /
    • 2005
  • In this study, in-cylinder flow of the swirl chamber type diesel engine numerically simulated by VECTIS code. The flow fields during the intake and compression process were also investigated in detail. Numerical results revealed that the generation and distortion of the swirling, tumbling vortices and those influences on turbulence kinetic energy by shape of the jet passage, angle and area. It was also found that flow characteristics were affected by inflow velocity that depends on change of the jet passage shape. Swirl ratio was increased according to decrease of jet passage area, and was affected by piston motion according to increase of jet passage angle. Tumbling vortices had the similar in various cases, but tumble ratio was increased with the inflow velocity. The generation of turbulence kinetic energy was considerably influenced by complex effects of swirling and tumbling vortices.

A Popularity-driven Cache Management and its Performance Evaluation in Meta-search Engines (메타 검색 엔진을 위한 인기도 기반 캐쉬 관리 및 성능 평가)

  • Hong, Jin-Seon;Lee, Sang-Ho
    • Journal of KIISE:Databases
    • /
    • v.29 no.2
    • /
    • pp.148-157
    • /
    • 2002
  • Caching in meta-search engines can improve the response time of users' request. We describe the cache scheme in our meta-search engine in terms of its architecture and operational flow. In particular, we propose a popularity-driven cache algorithm that utilizes popularities of queries to determine cached data to be purged. The popularity is a value that represents the normalized occurrence frequency of user queries. This paper presents how to collect popular queries and how to calculate query popularities. An empirical performance evaluation of the popularity-driven caching with the traditional schemes (i.e., least recently used (LRU) and least frequently used (LFU)) has been carried out on a collection of real data. In almost all cases, the proposed replacement policy outperforms LRU and LFU.

Safety Assessment of a Metal Cask under Aircraft Engine Crash

  • Lee, Sanghoon;Choi, Woo-Seok;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.505-517
    • /
    • 2016
  • The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD) was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is freestanding on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact loade-time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

Lubrication Characteristics in Fuel Injection Pump with Variation of Fuel Oils (연료 변경에 의한 연료분사펌프의 윤활 특성)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.245-250
    • /
    • 2015
  • This study investigates the lubrication characteristics of fuel injection pumps with reference to different fuel oils. Medium-speed diesel engines use fuel oils with various viscosities, such as heavy fuel oil (HFO, which is a high-viscosity fuel oil) and light diesel oil (LDO, which is a low-viscosity fuel oil). When fuel oil with a low viscosity is used, both fuel oil and lubricating oil lubricate the system. Thus, the lubrication of the fuel injection pump is in a multi-viscosity condition when the fuel oil in use changes. We suggest three cases of multi-viscosity models, and divide the fuel injection pump into three lubrication sections: a, the new oil section; b, the mixed oil section; and c, the used oil section. This study compares the lubrication characteristics with variation of the multi-viscosity model, clearance. The volume of Section b does not affect the lubrication characteristics. The lubrication characteristics of the fuel injection pump are poor when high-viscosity fuel oil transfers to low-viscosity fuel oil. This occurs because the viscosity in the new oil section (i.e., Section a) dominates the lubrication characteristics of the fuel injection pump. However, the lubricant oil supply in the used oil section (i.e., Section c) can improve the lubrication characteristics in this condition. Moreover, the clearances of the stem and head significantly influence the lubrication characteristics when the fuel oil changes.

THERMAL AND SMOKE MEASUREMENTS OF VEHICLE FIRES Establishing practical large-scale experiment for vehicle fires

  • Kim, Jeong-Hun;Kim, Hong;Lee, Bog-Young;Lee, Chang-Seop
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.335-342
    • /
    • 1997
  • Experiments were conducted to evaluate the hazard risks of vehicle fires. Sensors were strategically placed in passenger cars to determine the temperature, propagation rate and direction of flame. The life safety hazard evaluations such as smoke and gas analysis were included. An important ignition position was performed in the engine compartment. The effects of different ignition positions and the opening of door glasses were also reviewed. The experimental results indicate that the maximum temperature when a vehicle burns varies commonly from 90$0^{\circ}C$ -100$0^{\circ}C$. The flame reaches in the face of a driver about 6-7minutes and the windshield glass breaks about 10 minutes after the ignition in the engine compartment of vehicle. And the smoke and gas concentrations reached the limit of human inhalation after 13-14 minutes. Especially the concentrations of carbon monoxide exceeded the TWA(50 ppm) during short time after ignition in cases of all experiments.

  • PDF