DOI QR코드

DOI QR Code

Predictions of Fatigue Life of Copper Alloy for Regenerative Cooling Channel of Thrust Chamber

연소기 재생냉각 채널용 구리합금의 피로수명예측

  • Lee, Keumoh (Combustion Chamber Team, Korea Aerospace Research Institute) ;
  • Ryu, Chulsung (Combustion Chamber Team, Korea Aerospace Research Institute) ;
  • Heo, Seongchan (Combustion Chamber Team, Korea Aerospace Research Institute) ;
  • Choi, Hwanseok (Combustion Chamber Team, Korea Aerospace Research Institute)
  • Received : 2017.02.08
  • Accepted : 2017.08.12
  • Published : 2017.12.01

Abstract

Low-cycle thermal fatigue problem resulting from multiple use of a liquid rocket engine has to be considered for the development of a reusable launch vehicle. In this study, life prediction equations suggested by previous researchers were compared as applied to various copper alloy cases to predict fatigue lives from tensile test data. The present study has revealed that among the presently considered life prediction methods, universal slopes method provides the best life prediction result for the copper alloys, and the modified Mitchell's method provides the best life prediction result for oxygen free high conductivity (OFHC) copper.

재사용 발사체용으로 개발되는 엔진은 반복 사용 조건에 따른 저사이클 열피로 문제를 고려해야 한다. 본 연구는 연소기 재생냉각채널에 사용되는 구리합금의 피로수명을 인장시험 데이터로부터 예측하기 위하여 기존의 연구자들이 제안하였던 수명예측식을 다양한 종류의 구리합금의 경우에 적용하여 비교하였다. 제안된 수명예측식 중 공통경사법은 구리합금의 수명 예측에서 가장 좋은 결과를 보여 주었으며, 수정 Mitchell 방법은 OFHC 구리의 수명 예측에서 가장 좋은 결과를 보여주었다.

Keywords

References

  1. Conway, J.B., Stentz, R.H. and Berling, J.T., "High Temperature, Low-Cycle Fatigue of Copper-Base Alloys in Argon; Part I - Preliminary Results for 12 Alloys at $1000^{\circ}F$($538^{\circ}C$)," NASA CR 121259, 1973.
  2. Arya, V.K. and Halford, G.R., "Large-Displacement Structural Durability Analyses of Simple Bend Specimen Emulating Rocket Nozzle Liners," NASA TM 106521, 1994.
  3. Manson, S.S., "Fatigue - a Complex Subject," Experimental Mechanics, Vol. 5, No. 7, pp. 193-226, 1965. https://doi.org/10.1007/BF02321056
  4. Muralidharan, U. and Manson, S.S., "A Modified Universal Slopes Equation for Estimation of Fatigue Characteristic of Metals," Journal of Engineering Materials and Technology, Vol. 110, Issue 1, pp. 55-58, 1988. https://doi.org/10.1115/1.3226010
  5. Mitchell, M.R., Fatigue and Micro- structures, American Society for Metals, Metals Pack, O.H., U.S.A., pp. 385-437, 1979.
  6. Lee, K.O., Bae, K.H. and Lee, S.B., "Comparison of Prediction Methods for Low-Cycle Fatigue of HIP Superalloys at Elevated Temperatures for Turbopump Reliability," Materials Science and Engineering A, Vol. 519, Issue 1-2, pp. 112-120, 2009. https://doi.org/10.1016/j.msea.2009.04.044
  7. Baumel, A.J. and Seeger, T., Materials Data for Cyclic Loading, Supplement 1, Elsevier Science Publishers, Amsterdam, Netherlands, 1990.
  8. Ong, J.H., "An Improved Technique for the Prediction of Axial Fatigue Life from Tensile Data," International Journal of Fatigue, Vol. 15, No. 3, pp. 213-219, 1993. https://doi.org/10.1016/0142-1123(93)90179-T
  9. Park, J.H. and Song, J.H, "Detailed evaluation of methods for estimation of fatigue properties," International Journal of Fatigue, Vol. 17, No. 5, pp. 365-373, 1995. https://doi.org/10.1016/0142-1123(95)99737-U
  10. Lee, K.O., Ryu, C.S. and Choi, H.S., "Comparison of Life Prediction Method of Copper Alloy of Regenerative Cooling Chamber for Thrust Chamber," Aerospace Engineering and Technology, Vol. 9, No. 2, pp. 90-97, 2010.