• Title/Summary/Keyword: Energy transport equation

Search Result 193, Processing Time 0.027 seconds

Numerical Modeling of Cohesive Sediment Transport at Mokpo Coastal Zone (목포해역 점착성 퇴적물의 수송에 관한 수치모의)

  • Jung T.S.;Kim T.S.;Jeong D.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.36-44
    • /
    • 2006
  • Cohesive sediment transport in coastal region has been studied by numerical modeling. A finite element numerical model was setup to simulate hydrodynamics and sediment transport in the coastal region with complex topography. Only physical features of observed sediments has been used to determine erosion rates of bottom sediments together with the previous research results. The simulation results using the simply determined equation of erosion rates were compared with time variations of the observed SS concentration and showed good agreements. In conclusion, this method can be used to estimate transport of cohesive sediment conveniently.

  • PDF

COMPUTATIONAL EFFICIENCY OF A MODIFIED SCATTERING KERNEL FOR FULL-COUPLED PHOTON-ELECTRON TRANSPORT PARALLEL COMPUTING WITH UNSTRUCTURED TETRAHEDRAL MESHES

  • Kim, Jong Woon;Hong, Ser Gi;Lee, Young-Ouk
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.263-272
    • /
    • 2014
  • Scattering source calculations using conventional spherical harmonic expansion may require lots of computation time to treat full-coupled three-dimensional photon-electron transport in a highly anisotropic scattering medium where their scattering cross sections should be expanded with very high order (e.g., $P_7$ or higher) Legendre expansions. In this paper, we introduce a modified scattering kernel approach to avoid the unnecessarily repeated calculations involved with the scattering source calculation, and used it with parallel computing to effectively reduce the computation time. Its computational efficiency was tested for three-dimensional full-coupled photon-electron transport problems using our computer program which solves the multi-group discrete ordinates transport equation by using the discontinuous finite element method with unstructured tetrahedral meshes for complicated geometrical problems. The numerical tests show that we can improve speed up to 17~42 times for the elapsed time per iteration using the modified scattering kernel, not only in the single CPU calculation but also in the parallel computing with several CPUs.

The Study on the Electron ionization and Attachment Coefficients in $SF_6$+Ar Mixtures Gas ($SF_6$+Ar 혼합기체의 전리 및 부착계수에 관한 연구)

  • 김상남;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.591-593
    • /
    • 2000
  • In this paper, we describe the results of a combined experimental theoretical study designed to understand and predict the dielectric properties of SF$_{6}$ and SF$_{6}$+Ar mixtures. The electron transport, ionization, and attachment coefficients for pure SF$_{6}$ and gas mixtures containing SF$_{6}$ has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] SF$_{6}$+Ar mixtures were measured by time- of- flight method, The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with the experimental and theoretical for a rang of E/N values. Electron energy distribution functions computed from numerical solutions of the electron transport and reaction coefficients as functions of E/N. We have calculated $\alpha$,η and $\alpha$-η the ionization, attachment coefficients, effective ionization coefficients, and (E/N), the limiting breakdown electric-field to gas density ratio, in SF$_{6}$ and SF$_{6}$+Ar mixtures by numerically solving the Boltzmann equation for the electron energy distribution. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of theections of the

  • PDF

Optical Properties of Zn4GeSe6:Co2+ Single Crystals (Zn4GeSe6:Co2+ 단결정의 광학적 특성)

  • 김형곤;김남오;최영일;김덕태;김창주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.272-279
    • /
    • 2003
  • In this work Zn$_4$GeSe$_{6}$ :CO$^{2+}$ single crystals were grown by the chemical transport reaction method in which the iodine was used as the transporting agent. The Zn$_4$GeSe$_{6}$ :CO$^{2+}$ single crystal was found to have a monoclinic structure. The optical absorption spectra of grown crystals were investigated using a temperature-controlled UV-VIS -NIR spectrophotometer. The temperature dependence of band-edge absorption was in a good agreement with the Varshni equation. The observed impurity absorption peaks could be explained as arising from the electron transition between energy levels of Co$^{2+}$ ion sited at the T$_{d}$ symmetry point.

Ionization and Attachment Coefficients in CF4, CH4, Ar Mixtures Gas (CF4, CH4, Ar 혼합기체의 전리와 부착계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.13-17
    • /
    • 2012
  • Ionization and Attachment Coefficients in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures.

Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of Cl- ions and SO42- ions

  • Tanaka, Yoshinobu;Uchino, Hazime;Murakami, Masayoshi
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.63-76
    • /
    • 2012
  • Mother liquid discharged from a salt-manufacturing plant was electrodialyzed at 25 and $40^{\circ}C$ in a continuous process integrated with $SO_4{^{2-}}$ ion low-permeable anion-exchange membranes to remove $Na_2SO_4$ and recover NaCl in the mother liquid. Performance of electrodialysis was evaluated by measuring ion concentration in a concentrated solution, permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions, current efficiency, cell voltage, energy consumption to obtain one ton of NaCl and membrane pair characteristics. The permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions was low enough particularly at $40^{\circ}C$ and $SO_4{^{2-}}$ transport across anion-exchange membranes was prevented successfully. Applying the overall mass transport equation, $Cl^-$ ion and $SO_4{^{2-}}$ ion transport across anion-exchange membranes is evaluated. $SO_4{^{2-}}$ ion transport number is decreased due to the decrease of electro-migration of $SO_4{^{2-}}$ ions across the anion-exchange membranes. $SO_4{^{2-}}$ ion concentration in desalting cells becomes higher than that in concentration cells and $SO_4{^{2-}}$ ion diffusion is accelerated across the anion-exchange membranes from desalting cells toward concentrating cells.

A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model (저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구)

  • 김명호;신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1940-1954
    • /
    • 1992
  • Fine grid computations were attempted to analyze the turbulent flows in the near wall low Reynolds number region and the numerical analyses were incorporated by a finite-volume discretization with full find grid system and low Reynolds number k-.epsilon. model was employed in this region. For the improvement of low Reynolds number k-.epsilon. model, modification coefficient of eddy viscosity $f_{\mu}$ was derived as a function of turbulent Reynolds number $R_{+}$ and nondimensional length $y^{+}$ from the concept of two length scales of dissipation rate of turbulent kinetic energy. The modification coefficient $f_{\epsilon}$ in .epsilon. transport equation was also derived theoretically. In the turbulent kinetic energy equation, pressure diffusion term was added in order to consider low Reynolds number region effect. The main characteristics of this low Reynolds number k-.epsilon. model were founded as : (1) In high Reynolds number region, the present model has limiting behavior which approaches to the high Reynolds number model. (2) Present low Reynolds number k-.epsilon. model dose not need additional empirical constants for the transport equations of turbulent kinetic energy and dissipation of turbulent kinetic energy in order to consider wall effect. Present low Reynolds number turbulence model was tested in the pipe flow and obtained improved results in velocity profiles and Reynolds stress distributions compared with those from other k-.epsilon. models.s.s.

Current Sharing and AC Loss of a Multi-Layer HTS Power Transmission Cable with Variable Cable Length (다층 고온초전도 송전케이블의 길이에 따른 층별 전류분류 및 교류손실 계산)

  • Lee, Ji-Kwang;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • The superconducting transmission cable is one of interesting part in power application using high temperature superconducting wire. One important parameter in HTS cable design is transport current sharing because it is related with current transmission capacity and loss. In this paper, we calculate self inductances of each layer and mutual inductances between two layers from magnetic field energy, and current sharing of each layer for 4-layer cable using the electric circuit model which contain inductance and resistance (by joint and AC loss). Also, transport current losses which are calculated by monoblock model and Norris equation are compared. As a results, outer layer has always larger transport current than inner layer, and current capacity of each layer is largely influenced by resistance per unit cable length. As a conclusion, for high current uniformity and low AC loss, we have to decrease inductances themselves or those differences.

  • PDF

Mean energy of electrons in $SF_6$-Ar Mixtures Gas ($SF_6$-Ar 혼합기체(混合氣體)의 전자(電子) 평균(平均)에너지)

  • Kim, Sang-Nam;Seong, Nak-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.75-78
    • /
    • 2003
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range $30\sim300$[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method. The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values. The transport coefficients for electrons in (0.2[%])$SF_6$-Ar and (0.5[%]$SF_6$ - Ar mixtures were measured by time-of-flight method, and the electron energy distribution function and the parameters of the velocity and the diffusion were determined by the variation of the collision cross-sections with energy. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

A Modified Enskog-Like Equation of Self-Diffusion Coefficients for Penetrable-Sphere Model Fluids

  • Suh, Soong-Hyuck;Liu, Hong-Lai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1336-1340
    • /
    • 2011
  • Molecular dynamics simulations have been performed to investigate the transport properties of self-diffusion coefficients in the penetrable-sphere model system. The resulting simulation data for the product of the packing fraction and the self-diffusion coefficient exhibit a transition from an increasing function of density in lower repulsive systems, where the soft-type collisions are dominant, to a decreasing function in higher repulsive systems, where most particle collisions are the hard-type reflections due to the low-penetrability effects. A modified Enskog-like equation implemented by the effective packing fraction with the mean-field energy correction is also proposed, and this heuristic approximation yields a reasonably good result even in systems of high densities and high repulsive energy barriers.