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Molecular dynamics simulations have been performed to investigate the transport properties of self-diffusion

coefficients in the penetrable-sphere model system. The resulting simulation data for the product of the packing

fraction and the self-diffusion coefficient exhibit a transition from an increasing function of density in lower

repulsive systems, where the soft-type collisions are dominant, to a decreasing function in higher repulsive

systems, where most particle collisions are the hard-type reflections due to the low-penetrability effects. A

modified Enskog-like equation implemented by the effective packing fraction with the mean-field energy

correction is also proposed, and this heuristic approximation yields a reasonably good result even in systems of

high densities and high repulsive energy barriers. 
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Introduction

During the last couple of decades much progress has been

made in our understanding of the static and dynamic

properties of soft-condensed matter including colloids,

polymers, foams, gels, granular materials, and a number of

biological materials. The effective model potentials can be

of various nature,1 and the different minimal model has to be

considered accounting for the boundness of repulsive

interactions in such soft-condensed systems.2 One of the

simplest model systems in this approach is the so-called

penetrable-sphere (PS) fluids, in which two overlapping

spheres can penetrate each other with the finite repulsive

energy parameter. This bounded PS potential has been the

subject of several theoretical and simulation studies.3-12 

Suh and his co-workers13 has investigated two different

theoretical predictions, based on the fundamental-measure

theory proposed by Schmidt5 and the bridge density-func-

tional approximation proposed by Zhou and Ruckenstein,14

to the inhomogeneous structure of PS model fluids confined

within the spherical pore system. It is also reported in his

group15 that the modified density-functional theory, based on

both the bridge density functional and the contact-value

theorem, has been applied to the structural properties of PS

fluids near a slit hard wall, and that the Verlet-modified

bridge function for one-component systems proposed by

Choudhury and Ghosh8 has been extended to PS fluid mix-

tures. Very recently, in addition to the thermodynamic and

structural properties of PS systems, molecular dynamics

simulation studies for dynamic transport properties have

been carried out to add useful insights into the cluster-

formation and related thermophysical properties of PS

systems.16

There are in general two classes of computer simulation

approaches: stochastic Monte Carlo (MC) and deterministic

molecular dynamics (MD) methods. In MD calculations, the

actual trajectories of atoms or molecules are evaluated by

the numerical integration of Newon’s equations of motion,

in which time-dependent transport properties can be deter-

mined. Up to date, almost all simulations for the PS model

fluid have been carried out using the MC method. To our

best knowledge, except for our previous simulation work

cited above,16 MD results for the PS interaction potential

have not been presented in the literature. Computationally, a

better statistics can be achieved in MD simulations for

systems with discontinuous potentials. For instance, in order

to calculate the virial route to the equation of state for

hard-core systems, MC computations require an accurate

estimation of the radial distribution function. In many cases

the radial distribution function may change rapidly near the

contact distance for the systems of ionic solutions, highly

charged colloids, aligned liquid crystals, etc. Under these

circumstances the extrapolation to the contact value may

lead to larger uncertainties. For this reason, the pressure

determined by MC calculations, particularly in the dis-

continuous interaction system, is known to be less accurate

than that by MD simulations.17,18 

As a continuation of theoretical and simulation approaches

along this direction, one of the main motivations in this

work is to develop the statistical mechanical-based heuristic

approximation, namely, a modified Enskog-like equation of

self-diffusion coefficients, in order to investigate the diffu-

sion behavior involved in the PS system. By obtaining the

essentially exact machine data for precisely defined model

systems, MD simulation studies can be used to assess the

applicability of our proposed diffusion equations. Such

simulation approaches at the atomic or molecular level can

also be used to improve theoretical/empirical approximations
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for soft-condensed matter, which in turn will be helpful to

construct a fundamental basis of theoretical and practical

predictions in interpreting real experimental data. 

Model and Theoretical Approaches

With the finite and bounded core-repulsion the penetrable-

sphere pair potential is described as

 (1)

where ε(> 0) is the strength of the repulsive energy barrier

between two overlapping spheres with the diameter σ when
they penetrate each other. The PS model is simply reduced to

the classical hard-sphere (HS) system when ε*(≡ ε/kBT) → ∞
(where T is the temperature and kB is the Boltzmann

constant). This is equivalent to the zero-temperature limit

T*(≡ kBT/ε) → 0. In the opposite high-temperature limit or in

the high-penetrability limit (T* → ∞, ε* → 0), the PS system

becomes a collisionless ideal gas. 

In the PS system the overlapping penetrability allows one

in principle to consider any value of the nominal packing

fraction, φ(≡ (π/6)ρ*), where ρ*(≡ Nσ3/V) is the reduced

particle number density, N, the number of particles, and V,

the system volume. Note that the maximum packing fraction

in the pure HS system is  (≅ 0.7405) from the face-

centered cubic structure. 

In the low-density regime φ → 0 the transport properties

of a gas made of particles interacting via a given potential

can be derived by the application of the Chapman-Enskog

method to the well-known Boltzmann kinetic equation.19 For

the PS model fluid, Santos20 reported the self-diffusion

coefficient  obtained from the Boltzmann equation in

the first Sonine approximation, 

,  (2)

where

,  (3)

with

 × ln .  (4)

Obviously, in the low-penetrability limit ε* → ∞, the self-
diffusion coefficient for the PS model in Eq. (2) reduces to

that of the HS model, 

,  (5)

Eqs. (2) and (5) are derived from the Boltzmann kinetic

equation in the first Sonine approximation, and thus they are

well justified in the high dilution limit φ → 0. On the other

hand, they do not account properly for finite-density effects

with increasing densities. To correct this deficiency, several

empirical or semiempirical expressions have been proposed

in the case of the HS system. Among them, the most basic

one is provided by the Enskog kinetic theory.19,21 From taking

account of the effective number of collisions in the mode-

rately dense or the dense gas, the Enskog correction for the

self-diffusion coefficient in the HS model is represented as

,  (6)

where the Enskog factor  is the contact value of the

radial distribution function of the HS fluid. 

There are also a number of empirical formulas for DHS.

For systems of 500 HS particles or slightly fewer, the

following analytical fit to MD data was reported by Speedy22

.  (7)

Here, φg = 0.57 is the packing fraction at the HS glass

transition and Speedy's values are c1 = 0.48 and c2 = 1.17.

Recently, much more extensive MD computations were per-

formed by Sigurgeirsson and Heyes,23 and they refined the

values of the fitting coefficients c1 = 0.4740 and c2 = 1.1657

with an efficient MD algorithm dealing with up to 32,000

HS particles. The MD-based empirical form in Eq. (7) takes

account of the crowding effects in the first bracket term and

the hydrodynamic backflow effects at intermediate densities

in the second bracket term. 

In the case of the PS system, the task of extending the

Boltzmann result in Eq. (2) for a finite density to evaluate

the self-diffusion coefficient DPS is much more difficult than

in the HS case. For instance, the ratio DPS/  is not only a

function of density as in the HS case but also a function of

temperature or, equivalently, of ε*. 
In our previous MD studies,16 similar to the Enskog ap-

proximation in the HS fluid as given in Eq. (6), a following

simple Enskog-like expression for the PS fluid was proposed

.  (8)

This simple expression for predicting self-diffusion coeffi-

cients was found to be in a reasonable agreement in the

dilute system by comparing against MD simulation data.

However, for the dense PS system especially with higher

repulsive energy parameters, the noticeable discrepancies

were observed due to the locally inhomogeneous cluster-

forming structure as well as the collective dynamic motion

in collision processes involved in the PS fluid. Based on

such observations in our simulation studies, we propose a

kind of the heuristic equation for the self-diffusion pro-

perties, adjusted by the effective volume with mean-field

energy corrections, namely, the modified Enskog-like equation

,  (9)
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where

.  (10)

For , the corresponding particle configuration

becomes that of a totally unbiased random structure, and, at

a given packing fraction φ in the limit , this leads

statistically to 

.  (11)

In the limit  and , our modified Enkog-like

expression expressed in Eqs. (9) through (11) reduces to a

simple HS-type Enskog approximation in Eq. (8). 

In our heuristic diffusion equation above, the effective

particle volume fraction φeff is defined as the average effec-

tive total volume occupied by PS particles divided by the

system volume. The second term in Eq. (9) represents the

effective volume correction relative to the fully penetrating

PS structure . The last exponential term is related

to the energy barrier effects, in which the factor 6/π is used
to convert the total energy difference from the volume-based

scale into the number-based one, i.e., the reduced number

density (cf. ). This latter argument can be

supported by the fact that the total configurational energy is

related to the number of interacting pair-particles, but not to

the effective system volume occupied by particles. 

Results and Discussion

All MD results reported in this work are scaled to

dimensionless quantities by using a unit particle diameter σ,
a unit particle mass m, and a unit thermal energy kBT. In

these system units the reduced self-diffusion coefficient is

expressed as . 

In Table 1, system characteristics employed in this work

and MD simulation results for the reduced self-diffusion

coefficient are presented. Also listed in this table are the

contact value of the radial distribution function g(σ*) and the

effective packing fraction φeff measured during MD simulation

runs. The self-diffusion coefficient was calculated from mean-

square displacement curve using the Einstein formula. The

value of g(σ*) was carefully evaluated from the 5-points

extrapolation of g(σ) vs. r/σ near the contact distance. 
We determined φeff by the conventional hit-and-miss method

using a uniform (10 × 10 × 10) grid over approximately half

a million equilibrium configurations during our MD com-

putations. For the systems with ε* = 0.2, 0.5, and 1.0, the

resulting MD values of φeff in Table 1 are very close to the

theoretical predictions for randomly distributed configurations

as in Eq. (11). In the case ε* = 3.0, is φeff /φ close to unity up

to , which indicates HS-like configurations, and at φ =

0.6 it crosses the random distribution expectation. As we

increase densities further, PS particles are much overlapped

in the case ε* = 3.0. For instance, about 54% of the available

volume is effectively occupied at φ = 1.0; in contrast, at the

same density for ε* = 0.2, 0.5, and 1.0, particles occupy

about 65% of the total volume, indicating a less degree of

particle clustering effects. 

By using a semilogarithmic scale in Figure 1, we have

illustrated the product φD* as a function of the packing

fraction φ. As one may expect, the self-diffusion coefficient

(but, not the product of φD* as displayed in this figure) tends

to decrease with increasing PS densities. For the repulsive

energy barrier effects, the similar trend is detected: lower

repulsive systems tend to promote larger diffusivities in PS

particles. This behavior is not counterintuitive. To add more

repulsive interactions will enlarge the effective hard-collision

diameter between two colliding particles, leading to impede

the diffusion process in the PS system. In addition, there are

also several interesting diffusion behaviors observed in this

figure: (i) DPS > DHS for all sets of ε*-values, (ii)  > 

(or, ) for all sets of φ-values at a given ε*, and (iii) 
>  (or, ) for all sets of φ-values at ε* = 0.2, 0.5, and

1.0, but this is not always true in the case of ε* = 3.0.

Case (i) can be easily understood in terms of the energy

barrier effects as explained above. In this case, the reduced

PS collisional integral , calculated from Eqs. (3) and (4),

is always less than unity. In the dilute regime φ → 0, as can

be seen in Figure 1 by the extrapolation of MD diffusion

data to φ = 0, a remarkably good agreement with  can be

found for all sets of ε*-values. This confirms the validity of
PS kinetic approaches, recently developed by Santos,20 in the

context of the Chapman-Enskog method for the Boltzmann

equation of dilute gases. In case (ii),  and , as
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Table 1. System characteristics and MD simulation results for the penetrable-sphere model system

φ ε
* = 0.2 ε

* = 0.5 ε
* = 1.0 ε

* = 3.0

D* g(σ+) φ eff  D* g(σ+) φ eff  D* g(σ+) φ eff  D* g(σ+) φeff 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

41.49 1.006 0.0959

21.15 1.012 0.1839

14.38 1.018 0.2643

10.95 1.022 0.3374

8.889 1.026 0.4038

7.508 1.030 0.4639

6.473 1.033 0.5181

5.753 1.036 0.5672

5.104 1.038 0.6113

4.656 1.040 0.6509

9.579 1.032 0.0968

4.936 1.057 0.1865

3.379 1.077 0.2689

2.560 1.092 0.3436

2.044 1.105 0.4111

1.726 1.113 0.4717

1.455 1.121 0.5258

1.269 1.127 0.5740

1.117 1.131 0.6168

1.003 1.134 0.6549

3.549 1.087 0.0978

1.800 1.154 0.1896

1.196 1.203 0.2737

0.882 1.236 0.3493

0.690 1.257 0.4161

0.548 1.273 0.4745

0.459 1.279 0.5252

0.364 1.287 0.5683

0.299 1.288 0.6047

0.257 1.280 0.6353

1.149 1.241 0.0996

0.513 1.521 0.1968

0.303 1.744 0.2861

0.194 1.834 0.3599

0.130 1.827 0.4167

0.0841 1.810 0.4590

0.0548 1.764 0.4891

0.0355 1.711 0.5104

0.0240 1.648 0.5271

0.0155 1.610 0.5407
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represented in Eq. (8), are simply related to the contact value

of radial distribution functions. The corresponding 

becomes larger values with increasing the packing fraction

due to the particle crowding effects near the contact distance,

and thus  > . As regards for case (iii), this self-

diffusion behavior may be interpreted from the two types of

collision events occurring between the two colliding PS

particles, namely, the soft-type and the hard-type collisions.

Soft-type encounters give rise to the primary external collision

at r = σ+ followed by the secondary internal collision at

r = σ−. In contrast to the hard-type reflection, the soft-type

collision does not interrupt too much about PS particle

trajectories along the scattering direction. Consequently, the

soft-type collisions contribute to the enhancement of self-

diffusion coefficients, whereas the hard-type collisions to the

retardation of particle diffusion processes. 

One of the striking features clearly displayed in the PS

system, which cannot be observed in the HS system, is that

MD data for the product φD* exhibit a transition from an

increasing function of density (ε* = 0.2), where the soft-type

collisions are dominant, to a decreasing function (ε* = 3.0),

where most particle collisions are the hard-type reflections

due to the low-penetrability effects. (Although not shown in

this work, the similar diffusion behavior was observed for

higher repulsive systems of ) For the cases of ε* =
0.2, 0.5 and 1.0, both a simple HS-type Enskog prediction in

Eq. (8) and a modified Enskog-like prediction in Eq. (9)

show a reasonably good agreement with MD diffusion results,

even though the discrepancies in both two approximations

are gradually increased with increasing the system densities

except for ε* = 1.0 and . As we increase the repulsive

energy parameters, a qualitatively better agreement is observed

in a modified Enskog-like approximation than in a simple

HS-type Enskog equation. 

For the pure HS fluid, it has been reported22,23 that reliable

self-diffusion data can be obtained from the Enskog kinetic

equation over the range of equilibrium stable fluids (φ <

0.494). One may see this argument by comparing MD-fitting

diffusion data in Eq. (7) (a solid line) with Enskog theoretical

approximations in Eq. (6) (a dotted line). In the present

studies, the Carnahan-Starling formula24 was employed to

evaluate the contact value of the HS system, i.e., 

(1−φ/2)/(1−φ)3, which is known to be very accurate for the

HS system. Although not possible for direct measurements

in Figure 1, where the resulting curves are drawn for the

φD*-values, but not for the D*-values solely, MD-fitting data

for the self-diffusion coefficient in the HS fluid indicate

slightly larger values than the Enskog predictions at the

intermediate densities (at most 5% differences in the systems

of 32,000 HS particles23), followed by a rapid fall as the HS

crystallization is approached. 

For the PS systems of ε* = 3.0, the qualitatively similar

trend with the HS fluid is observed from a simple Enskog-

like prediction in Eq. (8) complimented with the MD contact

values in Table 1. MD data for  are very close to this

theoretical equation, and, at the intermediate density of 0.2 ≤
≤ 0.4, only marginal errors are exhibited. However, beyond
this density range, the deviation starts to be noticeable with

increasing φ . In contrast to larger reductions for MD self-

diffusion coefficients, the product of φD* slightly increase

with increasing densities in Eq. (8) for the PS system. This

opposed diffusion behavior deduced from a simple Enskog-

like equation is not correct. In fact, as listed in Table 1, the

g(σ+)-values are getting decreasing, but φeff-values are still

increasing for the systems of φ > 0.4 with ε* = 3.0, indicating

the development of locally inhomogeneous clustering-

formations in the PS fluid. 

For the same condition of ε* = 3.0, the modified Enskog-
like equation proposed in this work, using the MD contact

values and the effective packing fractions in Table 1, gives a

remarkably good result for φ ≤ 0.4. More reliable PS self-

diffusion coefficients can also be extended up to φ < 0.5-0.6.

Above this density range, by comparing MD simulation

data, it is found that the resulting self-diffusion coefficients

from our proposed diffusion equation are seemingly over-

estimated. On the other hand, more importantly, the modified

diffusion approximation in this work does correctly describe

the diffusion behavior for systems of φ > 0.5-0.6, in which a

simple Enskog-like equation does not predict the correct

diffusion behaviors in the PS fluid. 

Before concluding this section, it will be of interest to

g
PS σ+( )

D0

PS
DE

PS

ε* 3.0≥

φ 0.8≥

g
HS σ+( ) =

φ 0.2≤

Figure 1. The product of the packing fraction φ and the reduced
self-diffusion coefficient D* as a function of the packing fraction φ
for the PS system. The symbols are MD simulation data for the PS
fluid; the dotted and the solid lines, respectively, correspond to the
Enskog prediction in Eq. (6) and to the empirical MD data in Eq.
(7) for the HS system; the chain-dotted lines represent a simple
Enskog-like approximation in Eq. (8), complimented with the MD-
values for g(σ+); the chain-dot-dotted lines denote the modified
Enskog-like approximation in Eq. (9), complimented with the MD-
values for g(σ+) and φeff. 
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describe some relevant shortcomings for a modified Enskog-

like approximation proposed in this work. It is worthwhile

recalling that this heuristic diffusion equation, originally

formulated from the Boltzmann kinetic theory with the

Enskog correction factor, is implemented only by a certain

equilibrium structural property, i.e., the effective packing

fraction. Moreover, regardless of a given model potential,

the Boltzmann kinetic theory deals with only binary collision

effects by totally neglecting multiple collisions with the

molecular chaos assumption, known as ‘Stosszahlansatz’.

Under those conditions, particularly in densely colliding

systems, the deviation from our modified Enskog-like approxi-

mation can be largely due to the structure-based phase

transition together with the neglect of such dynamic corre-

lation effects in the PS collision dynamics. 

Conclusions

In the present work, for the comparison purpose with

various theoretical approximations available in the literature,

molecular dynamics simulations have been carried out over

a wide range of the packing fraction φ and the reduced

repulsive energy parameter ε* to investigate the transport
properties of self-diffusion coefficients in the PS fluid. In the

zero-density regime φ → 0, an excellent agreement is found

with the Boltzmann kinetic equation in the first Sonine

approximation for the PS fluid. In contrast to the HS system,

it is interestingly observed in our MD computations for the

PS fluid that the resulting simulation data for the product of

the packing fraction and the self-diffusion coefficients exhibit

a transition from an increasing function of density in lower

repulsive systems, where the soft-type collisions are domi-

nant, to a decreasing function in higher repulsive systems,

where most particle collisions are the hard-type reflections

due to the low-penetrability effects. 

As expected, the deviations from MD data with theoretical

approximations become more profoundly exhibited with

increasing densities. For higher repulsive systems, a simple

Enskog-like approximations can be applicable only with the

narrow range of densities of φ < 0.2. The possibilities of

obtaining more reliable self-diffusion coefficients are made

from a modified Enskog-like equation, adjusted by the effec-

tive packing fraction with the mean-field energy correction.

This heuristic approximation proposed in this work yields a

reasonably good result even in systems of high densities and

high repulsive energy barriers. For other transport properties

of the shear viscosity and the thermal conductivity, we are

currently examining to extend our modified Enskog-like

predictions to the two limiting cases of high- and low-penet-

rability approximations in the PS model system. Further

statistical mechanical approaches will be reported with

relevant MD simulation results in the near future. 
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