Browse > Article
http://dx.doi.org/10.12989/mwt.2012.3.1.063

Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of Cl- ions and SO42- ions  

Tanaka, Yoshinobu (IEM Research)
Uchino, Hazime (Tokai University, College of Marine Science and Technology)
Murakami, Masayoshi (Japan Fine Salt Co. Ltd.)
Publication Information
Membrane and Water Treatment / v.3, no.1, 2012 , pp. 63-76 More about this Journal
Abstract
Mother liquid discharged from a salt-manufacturing plant was electrodialyzed at 25 and $40^{\circ}C$ in a continuous process integrated with $SO_4{^{2-}}$ ion low-permeable anion-exchange membranes to remove $Na_2SO_4$ and recover NaCl in the mother liquid. Performance of electrodialysis was evaluated by measuring ion concentration in a concentrated solution, permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions, current efficiency, cell voltage, energy consumption to obtain one ton of NaCl and membrane pair characteristics. The permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions was low enough particularly at $40^{\circ}C$ and $SO_4{^{2-}}$ transport across anion-exchange membranes was prevented successfully. Applying the overall mass transport equation, $Cl^-$ ion and $SO_4{^{2-}}$ ion transport across anion-exchange membranes is evaluated. $SO_4{^{2-}}$ ion transport number is decreased due to the decrease of electro-migration of $SO_4{^{2-}}$ ions across the anion-exchange membranes. $SO_4{^{2-}}$ ion concentration in desalting cells becomes higher than that in concentration cells and $SO_4{^{2-}}$ ion diffusion is accelerated across the anion-exchange membranes from desalting cells toward concentrating cells.
Keywords
ion-exchange membrane; electrodialysis; saline water concentration; ion transport; permselectivity; salt production;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Amara, M. and Kerdjiodj, H. (2007), "A modified anion-exchange membrane applied to purification of effluent containing different anions. Pre-treatment before desalination", Desalination, 206(1-3), 205-209.   DOI
2 Demin, A.V. and Zabolotskii, V.I. (2008), "Model verification of limiting concentration by electrodialysis of an electrolyte solution", Russ. J. Electrochem., 44(9), 1140-1146. (published in Elektrokhimiya, 44(9), 1140-1146.
3 Dunlop, P.J. (1957), "A study of interacting flows in diffusion of the system reffinose-KCl-$H_{2}O$ at $25^{\circ}$", J. Phys. Chem., 61, 994-1000.   DOI
4 Dunlop, P.J. and Gosting, L.J. (1959), "Use of diffusion and thermodynamics data to test the Onsager reciprocal relation for isothermal diffusion in the system NaCl-KCl-$H_{2}O$ at $25^{\circ}C$", J. Phys. Chem., 63(1), 86-93.   DOI
5 Egawa, I., Ehara, R., Oda, T. and Ogawa, S. (1968), Salt production method, JP Patent, S43-7838.
6 Grigorchk, O.V., Vasil'eva, V.I., Shaposhnik, V.A. and Kuz'minykh, V.A. (2003), "Mutual effect of concentration fields in solutions of deionization and concentration compartments during electrodialysis with ion-exchange membranes", Russ. J. Electrochem., 39(7), 777-783.   DOI
7 Hani, H., Nishihara, H. and Oda, Y. (1961), Anion-exchange membrane having permselectivity between anions, JP Patent, S36-15258.
8 Huang, T.C. and Yu, I.Y. (1988), "Correlation of ionic transfer rate in electrodialysis under limiting current density conditions, J. Membrane Sci., 35(2), 193-206.   DOI
9 Inamori. T. and Yamamoto, T. (1980), Removing method of calcium chlorides in bittern, JP Patent S55-7505.
10 Kabay, N., Ipek, O., Kahveci, H. and Yuksel, M. (2006), "Effect of salt combination on separation of monovalent and divalent salts by electrodialysis", Desalination, 198(1-3), 84-91.   DOI
11 Kabay, N., Kahveci, H., Ipek, O. and Yuskel, M. (2006), "Separation of monovalent and divalent ions from ternary mixtures by electrodialysis", Desalination, 198(1-3), 74-83.   DOI
12 Kadota, Y., Murakoshi, M. and Kawate, H. (1981), Treating method of brine, JP Patent S56-367.
13 Koter, S., Kultys, M. and Gilewicz-Lukasik, B. (2011), "Modling the electric transport of HCl and $H_{3}PO_{4}$ mixture through anion-exchange membranes", Membrane Water Treatment, 2(3), 187-205.   DOI
14 McClintock, R., Neihof, R. and Sollner, K. (1960), "Relative rates of electromigration of different ions of the same charge across permselective membranes", J. Electrochem. Soc., 107(4), 315-324.   DOI
15 Mihara, K., Misumi, T., Miyauchi, H. and Ishida, Y. (1970), Anion-exchange membrane having excellent specific permselectivity between anions, JP Patent, S45-19980, S45-30693.
16 Mihara, K., Misumi, T., Miyauchi, H. and Ishida, I. (1972), Production of a cation-exchange membrane having excellent specific permselectivity between cations, JP Patent, S47-3081.
17 Mizutani, Y., Yamane, R. and Sata, T. (1971a), Electrodialysis for transporting selectively smaller charged cations, JP Patent, S46-23607.
18 Mizutani, Y., Yamane, R., Sata, T. and Izuo, T. (1971b), Permselectivity treatment of a cation-exchange membrane, JP Patent, S46-42083.
19 Nikonenko, V.V., Pismenskaya, N.D., Belova, E.I., Sistat, P., Huguet, P., Pourcelly, G. and Larchet, C. (2010), "Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis", Adv. Colloid Interface Sci., 160(1-2), 101-123.   DOI
20 Mohamadi, T., Razmi, A. and Sadradeh, M. (2004), "Effect of operating parameters on $Pb^{2+}$ separation from waste water using electrodialysis", Desalination, 167(15), 379-385.   DOI
21 Oren, Y. and Litan, A. (1974), "The state of the solution-membrane interface during ion transport across an ionexchange membrane", J. Phys. Chem., 78(18), 1805-1811.   DOI
22 Quemeneur, F., Schlumpf, J.P., Firdaous, L., Stitou, M., Maleriat, J.P. and Jaouen, P. (2002), "Modification of ionic composition of natural salt-waters by electrodialysis", Desalination, 149(1-3), 411-416.   DOI
23 Rubinstein, I. (1990), "Theory of concentration polarization effects in electrodialysis on counter-ion selectivity of ion-exchange membranes with differing counter-ion distribution coefficients", J. Chem. Soc. Faraday Trans., 86(10), 1857-1861.   DOI
24 Sadrzadeh, M., Razmi, A. and Mohammadi, T. (2007), "Separation of monovalent, divalent and trivalent ions from wastewater at various operating conditions using electrodialysis", Desalination, 205(1-3), 53-61.   DOI
25 Sata, T, Yamaguchi, T., Kawamura, K. and Matsusaki, K. (1997), "Transport numbers of various anions relative to chloride ions in modified anion-exchange membranes during electrodialysis", J. Chem. Soc. Faraday Trans., 93(3), 457-462.   DOI
26 Sata, T. (2004), Ion Exchange Membranes, Royal Soc. Chem. Cambridge, pp. 135-202.
27 Tanaka, Y. (2005), "Limiting current density of an ion-exchange membrane and of an electrodialyzer", J. Membrane Sci., 266(1-2), 6-17.   DOI
28 Tanaka, Y. (2006), "Irreversible thermodynamics and overall mass transport in ion-exchange membrane electrodialysis", J. Membrane Sci., 281(1-2), 517-531.   DOI
29 Tanaka, Y. (2010), "A computer simulation of ion exchange membrane electrodialysis for concentration of seawater", Membrane Water Treatment, 1(1), 13-37.   DOI
30 Tanaka, Y. and Murakami, M. (1988), Production method of refined salt, JP Patent S63-282114.
31 Tanaka, Y. and Seno, M. (1981), "Treatment of ion exchange membranes to decrease divalent ion permeability", J. Membrane Sci., 8(2), 115-127.   DOI
32 Turek, M., Dydo, P. and Was, J. (2007), "High efficiency electrodialysis reversal of concentrated calcium sulfate and calcium carbonate solutions", Desalination, 205(1-3), 62-66.   DOI
33 Tsunoda, Y., Murakoshi, M. and Kawate, H. (1981), Treating method of brine, JP Patent, S56-367.
34 Zabolotsky, V. I., Nikonenko, V. V., Pismenskaya, N. D., Laktinov, E. V., Urtenov, M. K., Strathmann, H., Wessling, M. and Koops, G. H. (1998), "Coupled transport phenomena in overlimiting current electrodialysis", Sep. and Pur. Tech., 14(1-3), 255-267.   DOI