• Title/Summary/Keyword: Energy storage density

Search Result 396, Processing Time 0.022 seconds

Carbonaceous Media for Vehicular Natural Gas Storage (자동차용 천연가스 저장을 위한 탄소매질)

  • Moon, Hee
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Compressed natural gas (CNG) has been used as a vehicular fuel compressed at 24.8 MPa because the energy density of natural gas is extremely low compared with gasoline. Thus it has problems in both safety and cost for multiple stage compression. For these reasons the use of adsorbed natural gas (ANG) has been pursued since the storage of natural gas is possible at a relatively low pressure. The present target is to obtain media to store natural gas at 3.5 MPa as ANG that ensures the comparable energy density of CNG, giving approximately one-fourth the driving range of an equivalent volume gasoline tank. In this review, the recent development of carbon media, their characteristics, and practical applications for natural gas storage are introduced and some recommendations are also suggested.

Effect of Natural Convection on the Heat Transfer in a Latent Heat Storage System (잠열축열시스템의 축열과정에서 자연대류의 영향에 관한 연구)

  • Ryu, S.N.;Han, G.Y.
    • Solar Energy
    • /
    • v.19 no.2
    • /
    • pp.29-36
    • /
    • 1999
  • Heat transfer characteristics of a low temperature latent heat storage system during the heat storage stage was examined for the circular finned tubes using fatty acid which shows the big density difference during melting as phase change materials. The heat storage vessel has the dimension of 530 mm height, 74 mm inside diameter and inner heat transfer tube is 480 mm in height and 13.5 mm outside diameter. Hot water was employed as the heat transfer fluid. During the heat storage stage, it was found that both conduction and natural convection were the major heat transfer mechanism. It was also found that the effect of natural convection on the heat transfer was more significant for the unfinned tube system than that for the finned tube system. The experimentally determined overall heat transfer coefficients were in the range of $50{\sim}250W/m^2K$ and the correlation for natural convection heat transfer as a function of Nusselt and Rayleigh number was proposed.

  • PDF

A Novel Hybrid Supercapacitor Using a Graphite Cathode and a Niobium(V) Oxide Anode

  • Park, Gum-Jae;Kalpana, D.;Thapa, Arjun Kumar;Nakamura, Hiroyoshi;Lee, Yun-Sung;Yoshio, Masaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.817-820
    • /
    • 2009
  • To meet the high current load requirement from the high energy density realized by metal oxide and high power density graphite, we propose a novel hybrid supercapacitor consisting of Nb2O5 and KS6 graphite in 1.0 M LiPF6-EC:DEC (1:2). This new system exhibits a sloping voltage profile from 2.7 to 3.5 V during charging and presents a high operating voltage plateau between 1.5 and 3.5 V during discharging. The cell was tested at a current density of 100 mA/g with a cut-off voltage between 3.0 and 1.0 V. This novel energy storage system delivers the highest initial discharge capacity of 55 mAh/g and exhibits a good cycle performance.

Characterization of Electric Double-Layer Capacitor with 0.75M NaI and 0.5 M VOSO4 Electrolyte

  • Chun, Sang-Eun;Yoo, Seung Joon;Boettcher, Shannon W.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2018
  • We describe a redox-enhanced electric double-layer capacitor (EDLC) that turns the electrolyte in a conventional EDLC into an integral, active component for charge storage-charge is stored both through faradaic reactions with soluble redox-active molecules in the electrolyte, and through the double-layer capacitance in a porous carbon electrode. The mixed-redox electrolyte, composed of vanadium and iodides, was employed to achieve high power density. The electrochemical reaction in a supercapacitor with vanadium and iodide was studied to estimate the charge capacity and energy density of the redox supercapacitor. A redox supercapacitor with a mixed electrolyte composed of 0.75 M NaI and 0.5 M $VOSO_4$ was fabricated and studied. When charged to a potential of 1 V, faradaic charging processes were observed, in addition to the capacitive processes that increased the energy storage capabilities of the supercapacitor. The redox supercapacitor achieved a specific capacity of 13.44 mAh/g and an energy density of 3.81 Wh/kg in a simple Swagelok cell. A control EDLC with 1 M $H_2SO_4$ yielded 7.43 mAh/g and 2.85 Wh/kg. However, the relatively fast self-discharge in the redox-EDLC may be due to the shuttling of the redox couple between the polarized carbon electrodes.

Characteristic analysis and condenser design of gas helium circulation system for zero-boil-off storage tank

  • Jangdon Kim;Youngjun Choi;Keuntae Lee;Jiho Park;Dongmin Kim;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.65-69
    • /
    • 2023
  • Hydrogen is an eco-friendly energy source and is being actively researched in various fields around the world, including mobility and aerospace. In order to effectively utilize hydrogen energy, it should be used in a liquid state with high energy storage density, but when hydrogen is stored in a liquid state, BOG (boil-off gas) is generated due to the temperature difference with the atmosphere. This should be re-condensed when considering storage efficiency and economy. In particular, large-capacity liquid hydrogen storage tank is required a gaseous helium circulation cooling system that cools by circulating cryogenic refrigerant due to the increase in heat intrusion from external air as the heat transfer area increases and the wide distribution of the gas layer inside the tank. In order to effectively apply the system, thermo-hydraulic analysis through process analysis is required. In this study, the condenser design and system characteristics of a gaseous helium circulation cooling system for BOG recondensation of a liquefied hydrogen storage tank were compared.

Electrochemical Characteristics of Hybrid Cell Consisting of Li Secondary Battery and Supercapacitor (리튬이차전지와 슈퍼커패시터로 구성된 하이브리드 셀의 전기화학적 특성)

  • KIM1, SANGGIL;GIL, BOMIN;HWANG, GABJIN;RYU, CHEOLHWI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2019
  • This study investigates the electrochemical characteristics of the hybrid cell that combined the advantageous characteristics of Li secondary battery and supercapacitor, high energy density and high power density, respectively. Electrochemical behaviors of the hybrid cell was characterized by charge/discharge, cycle and impedance tests. The hybrid cell using Li secondary battery and supercapacitor had better discharge capacity and cycle performance than that of using Li secondary battery only. Proper design of such a hybrid cell system is expected to result in substantial benefits to the well being of the Li secondary battery. The hybrid cell involving Li secondary battery for high energy density and supercapacitor for high power density may be the possible solution for future energy storage system.

High Power Density and Low Cost Photovoltaic Power Conditioning System with Energy Storage System (에너지 저장장치를 갖는 고 전력밀도 및 저가격형 태양광 인버터 시스템)

  • Keum, Moon-Hwan;Jang, Du-Hee;Hong, Sung-Soo;Han, Sang-Kyoo;SaKong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.587-593
    • /
    • 2011
  • A new high power density and low cost Photovoltaic Power Conditioning System (PV PCS) with energy storage system is proposed. Its high power density and cost effectiveness can be achieved through the unification of the maximum power point tracker and battery charger/discharger. Despite of the reduced power stage, the proposed system can achieve the same performances of maximum power point tracking and battery charging/discharging as the conventional system. Moreover, the high voltage stress across the link-capacitor can be relieved through the series-connected link-capacitor with the battery. Therefore, a large number of series/parallel-connected link-capacitors can be reduced by 4-times. Especially, when the utility power failure happens, both photovoltaic and battery energies can be supplied to the load with only one power stage. Therefore, it features a simpler structure, less mass, lower cost, and fewer devices. Finally, to confirm the operation, validity, and features of the proposed system, theoretical analysis and experimental results from a single phase AC 220Vrms/1.5kW prototype are presented.

Efficient cell design and fabrication of concentration-gradient composite electrodes for high-power and high-energy-density all-solid-state batteries

  • Kim, Ju Young;Kim, Jumi;Kang, Seok Hun;Shin, Dong Ok;Lee, Myeong Ju;Oh, Jimin;Lee, Young-Gi;Kim, Kwang Man
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.129-137
    • /
    • 2020
  • All-solid-state batteries are promising energy storage devices in which high-energy-density and superior safety can be obtained by efficient cell design and the use of nonflammable solid electrolytes, respectively. This paper presents a systematic study of experimental factors that affect the electrochemical performance of all-solid-state batteries. The morphological changes in composite electrodes fabricated using different mixing speeds are carefully observed, and the corresponding electrochemical performances are evaluated in symmetric cell and half-cell configurations. We also investigate the effect of the composite electrode thickness at different charge/discharge rates for the realization of all-solid-state batteries with high-energy-density. The results of this investigation confirm a consistent relationship between the cell capacity and the ionic resistance within the composite electrodes. Finally, a concentration-gradient composite electrode design is presented for enhanced power density in thick composite electrodes; it provides a promising route to improving the cell performance simply by composite electrode design.

DC-Link Active Power Filter for High-Power Single-Phase PWM Converters

  • Li, Hongbo;Zhang, Kai;Zhao, Hui
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.458-467
    • /
    • 2012
  • Single phase converters suffer from ripple power pulsating at twice the line frequency. The ripple power is usually absorbed by a bulky capacitor bank and/or a dedicative LC resonant link, resulting in a low power density and a high cost. An alternative solution is using a dc link active power filter (APF) to direct the pulsating power into another energy-storage component. The main dc link filter capacitor can then be reduced substantially. Based on a mainstream dc APF topology, this paper proposed a new control strategy incorporating both dual-loop control and repetitive control. The circuit parameter design is also re-examined from a control point of view. The proposed APF scheme has better control performance, and is more suited for high power applications since it works in CCM and with a low switching frequency.

Damping Properties of a Superconductor Bearing in a 35 kWh Class Superconductor Flywheel Energy Storage System (35 kWh급 플라이휠용 초전도 베어링의 댐핑 특성평가)

  • Park, B.J.;Jung, S.Y.;Han, S.C.;Han, S.J.;Lee, D.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.66-70
    • /
    • 2012
  • Superconductor flywheel energy storage system (SFESs) is an electro-mechanical battery with high energy storage density, long life, and good environmental affinity. SFESs have been developed for application to a regenerative power of train, the storage of distributed power sources such as solar and wind power, and a power quality improvement. As superconductor bearing is completely passive, it is not necessary to control a system elaborately but accurate analysis in mechanical properties of the HTS bearing is very important for application to SFESs. Stiffness and damping properties are the main index for evaluation the capacity of HTS bearings and make it possible to adjust rotordynamic properties while operating the rotor-bearing system. The superconductor bearing consists of a stator containing single grain YBCO bulks, a ring-type permanent magnet rotor with a strong magnetic field that can reach the bulk surface, and a bearing support for assembly to SFESs frame. In this study, we investigated the stiffness and damping properties of superconductor bearings in 35 kWh SFESs. Finally, we found that 35 kWh superconductor bearing has uniform stiffness properties depend on the various orientations of rotor vibration. We discovered total damping coefficient of superconductor bearing is affected by not only magnetic damping in superconductor bulk but also external damping in bearing support. From the results, it is confirmed that the conducted evaluation can considerably improve energy storage efficiency of the SFESs, and these results can be used for the optimal capacity of superconductor bearings of the SFESs.