DOI QR코드

DOI QR Code

A Novel Hybrid Supercapacitor Using a Graphite Cathode and a Niobium(V) Oxide Anode

  • Park, Gum-Jae (Department of Applied Chemistry, Saga University) ;
  • Kalpana, D. (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Thapa, Arjun Kumar (Department of Applied Chemistry, Saga University) ;
  • Nakamura, Hiroyoshi (Department of Applied Chemistry, Saga University) ;
  • Lee, Yun-Sung (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Yoshio, Masaki (Department of Applied Chemistry, Saga University)
  • Published : 2009.04.20

Abstract

To meet the high current load requirement from the high energy density realized by metal oxide and high power density graphite, we propose a novel hybrid supercapacitor consisting of Nb2O5 and KS6 graphite in 1.0 M LiPF6-EC:DEC (1:2). This new system exhibits a sloping voltage profile from 2.7 to 3.5 V during charging and presents a high operating voltage plateau between 1.5 and 3.5 V during discharging. The cell was tested at a current density of 100 mA/g with a cut-off voltage between 3.0 and 1.0 V. This novel energy storage system delivers the highest initial discharge capacity of 55 mAh/g and exhibits a good cycle performance.

Keywords

References

  1. Barbieri, O.; Hahn, M.; Herzog, A.; Kotz, R. Carbon 2005, 43, 1303. https://doi.org/10.1016/j.carbon.2005.01.001
  2. Hahn, M.; Warsig, A.; Gallay, R.; Novak, P.; Kotz, R. Electrochem. Commun. 2005, 7, 925. https://doi.org/10.1016/j.elecom.2005.06.015
  3. Conway, B. E. Electrochemical Supercapacitor-Scientific Fundamentals and Technological Application; Kluwer Academic: New York, 1999; pp 29-31.
  4. Kumagai, N.; Tanno, K. Denki Kagaku. 1982, 50, 704.
  5. Kumagai, N.; Ishiyama, I.; Tanno, K. J. Power Sources. 1987, 20, 193. https://doi.org/10.1016/0378-7753(87)80111-8
  6. Yoshio, M.; Nakamura, H. Wang, H.; Electrochem. Solid-States Lett. 2006, 9, A561 https://doi.org/10.1149/1.2357987
  7. Wang, H.; Yoshio, M. Electrochem. Commun. 2006, 8, 1481. https://doi.org/10.1016/j.elecom.2006.07.016
  8. Wang, H.; Yoshio, M.; Thapa, A. K.; Nakamura, H. J. Power Sources 2007, 169, 365.
  9. Aurbach, D.; Teller, H.; Koltypin, M.; Levi, E. J. Power Sources 2003, 1, 119.
  10. Holzapfel, M.; Buqa, H.; Krumeich, F.; Novak, P.; Petrat, F. M.; Veit, C. Electrochem. Solid-state Lett. 2005, 8, A516. https://doi.org/10.1149/1.2030448
  11. Jehng, J. M.; Wachs, I. E. Chem. Mater. 1991, 3, 100. https://doi.org/10.1021/cm00013a025
  12. Carlin, R. T.; De Long, H. C.; Fuller, J.; Frulove, P. C. J. Electrochem. Soc. 1994, 141, L73.
  13. Wang, H.; Yoshio, M. J. Power Sources. 2008, 177, 681. https://doi.org/10.1016/j.jpowsour.2007.11.066

Cited by

  1. Graphene-based materials as supercapacitor electrodes vol.20, pp.29, 2010, https://doi.org/10.1039/c000417k
  2. vol.21, pp.3, 2012, https://doi.org/10.5855/ENERGY.2012.21.3.309
  3. Synthesis and Electrochemical Characterization of Polypyrrole/Multi-walled Carbon Nanotube Composite Electrodes for Supercapacitor Applications vol.31, pp.5, 2009, https://doi.org/10.5012/bkcs.2010.31.5.1228
  4. Constructing a novel and safer energy storing system using a graphite cathode and a MoO3 anode vol.196, pp.18, 2009, https://doi.org/10.1016/j.jpowsour.2011.04.059
  5. Single-step microwave mediated synthesis of the CoS2 anode material for high rate hybrid supercapacitors vol.2, pp.29, 2009, https://doi.org/10.1039/c4ta01633e
  6. Recent progress and applications of niobium-based nanomaterials and their composites for supercapacitors and hybrid ion capacitors vol.5, pp.12, 2009, https://doi.org/10.1039/d1se00397f