Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.1.20

Characterization of Electric Double-Layer Capacitor with 0.75M NaI and 0.5 M VOSO4 Electrolyte  

Chun, Sang-Eun (School of Materials Sciences and Engineering, Kyungpook National University)
Yoo, Seung Joon (Department of Chemistry and Biochemistry, University of California)
Boettcher, Shannon W. (Department of Chemistry and Biochemistry, University of Oregon)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.1, 2018 , pp. 20-27 More about this Journal
Abstract
We describe a redox-enhanced electric double-layer capacitor (EDLC) that turns the electrolyte in a conventional EDLC into an integral, active component for charge storage-charge is stored both through faradaic reactions with soluble redox-active molecules in the electrolyte, and through the double-layer capacitance in a porous carbon electrode. The mixed-redox electrolyte, composed of vanadium and iodides, was employed to achieve high power density. The electrochemical reaction in a supercapacitor with vanadium and iodide was studied to estimate the charge capacity and energy density of the redox supercapacitor. A redox supercapacitor with a mixed electrolyte composed of 0.75 M NaI and 0.5 M $VOSO_4$ was fabricated and studied. When charged to a potential of 1 V, faradaic charging processes were observed, in addition to the capacitive processes that increased the energy storage capabilities of the supercapacitor. The redox supercapacitor achieved a specific capacity of 13.44 mAh/g and an energy density of 3.81 Wh/kg in a simple Swagelok cell. A control EDLC with 1 M $H_2SO_4$ yielded 7.43 mAh/g and 2.85 Wh/kg. However, the relatively fast self-discharge in the redox-EDLC may be due to the shuttling of the redox couple between the polarized carbon electrodes.
Keywords
Iodide ion; Vanadium ion; Redox-active molecules; Redox-enhanced EDLC; Self-discharge;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. New York, KA / PP, (1999).
2 Miller, J.R., Simon, P, Science, 2008, 321(5889), 651-652.   DOI
3 Wang, B., Maciá-Agulló, J.A., Prendiville, D.G., Zheng, X., Liu, D., Zhang, Y., et al., J. Electrochem. Soc, 2014, 161(6), A1090-A1093.   DOI
4 Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P.-L., Tolbert, S.H., et al, Nat. Mater, 2013, 12(6), 518-522.   DOI
5 Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall'Agnese, Y., Rozier, P., Taberna, P.L., et al, Science. 2013, 341(6153), 1502-1505.   DOI
6 Chun, S.-E., Evanko, B., Wang, X., Vonlanthen, D., Ji, X., Stucky, G.D., et al, Nat. Commun, 2015, 67818.
7 Lu, M., Beguin, F., Frackowiak, E. Supercapacitors: Materials, Systems and Applications, Wiley, (2013).
8 Long, J.W., Beanger, D., Brousse, T., Sugimoto, W., Sassin, M.B., Crosnier, O, MRS Bulletin, 2011, 36(07), 513-522.   DOI
9 Whitacre, J.F., Wiley, T., Shanbhag, S., Wenzhuo, Y., Mohamed, A., Chun, S.E., et al., J. Power Sources, 2012, 213, 255-264.   DOI
10 Schweitzer, G.K., Pesterfield, L.L. The Aqueous Chemistry of the Elements, Oxford University Press, (2010).
11 Lota, G., Fic, K., Frackowiak, E., Electrochem. Commun, 2011, 13(1), 38-41.   DOI
12 Roldan, S., Blanco, C., Granda, M., Menendez, R., Santamaria, R. Angew, Chem. Int. Ed, 2011, 50(7), 1699-1701.   DOI
13 Roldan, S., Gonzalez, Z., Blanco, C., Granda, M., Menendez, R., Santamaria, R, Electrochim. Acta, 2011, 56(9), 3401-3405.   DOI
14 Roldan, S., Granda, M., Menendez, R., Santamaria, R., Blanco, C, J. Phys. Chem. C, 2011, 115(35), 17606-17611.   DOI
15 Senthilkumar, S.T., Selvan, R.K., Melo, J.S, J. Mater. Chem. A, 2013, 1(40), 12386-12394.   DOI