• Title/Summary/Keyword: Energy storage density

Search Result 396, Processing Time 0.029 seconds

Measuring Interfacial Tension between Brine and Carbon Dioxide in Geological CO2 Sequestration Conditions using Pendant Bubble Methods (수적(垂滴)법을 이용한 이산화탄소 지중저장 조건에서의 염수-이산화탄소 간 계면장력 측정)

  • Park, Gyuryeong;An, Hyejin;Kim, Seon-ok;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.46-55
    • /
    • 2016
  • This experimental study was aimed to estimate interfacial tension of brine-$CO_2$ by using a pendant bubble method and image analysis. Measurements were performed for wide ranges of temperatures, pressures, and salinities covering reservoir conditions in Pohang basin, a possible candidate for $CO_2$ storage operation in Korea. The profiles of $CO_2$ bubbles in brine obtained from image analysis with the densities of brine and $CO_2$ from previous studies were applied to Laplace-Young equation for calculating interfacial twnsion in brine-$CO_2$ system. The experimental results reveals that the interfacial tension is significantly affected by reservoir conditions such as pressure, temperature and water salinity. For conditions of constant temperature and water salinity, the interfacial tension decreases as pressure increases for low pressures (P < $P_c$), and approaches to a constant value for high pressures. For conditions of constant pressure and water salinity, the interfacial tension increases as temperature increases for T < $T_c$, with an asymptotic trend towards a constant value for high temperatures. For conditions of constant pressure and temperature, the interfacial tension increases with increasing water salinity. The trends in changes of interfacial tension can be explained by the effects of the reservoir conditions on the density difference of brine and $CO_2$, and the solubility of $CO_2$ in brine. The information on interfacial tensions obtained from this research can be applied in predicting the migration and distribution of injecting and residual fluids in brine-$CO_2$-rock systems in deep geological environments during geological $CO_2$ sequestrations.

Thermal Performance Evaluation Monitoring Study of Transparent Insulation Wall System (투명단열 축열벽 시스템의 열성능 평가 실험 연구)

  • Kim, B.S.;Yoon, J.H.;Yoon, Y.J.;Baek, N.C.;Lee, J.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various efforts to combine new high-tech materials with solar system have been progressed nowadays in order to improve the performance of the existing passive solar system. TIM(Transparent Insulation Material) replacing the conventional outer building envelope glazing as well as the wall is good example for this trend. TI integrated wall is a thermal mass wall with a special shaped TIM instead of using typical envelope materials The tested TIM type is a small(diameter 4mm and thickness 50mm) capillary tube of Okalux model and cement brick(density 1500kg/m3). The purpose of this study was to analyze the thermal performance through the actual measurements performed in a test cell. This study was carried out to justify the following issues. 1) the impact of Tl-wall over the temperature variations 2) the impact of mass wall surface absorptance over the transient thermal behavior and 3) the impact of thermal mass wall thickness over the temperature variations. Finally, as results indicated that the peak time of room temperature was shifted about one hour early when absorptance of thermal mass wall changed from 60% to 95% for the 190mm thickness thermal mass wall test case. the temperature difference of both surfaces of thermal mass wall surface showed about $23^{\circ}C$ during a day of March for the 380mm thickness thermal mass wall case. However, the thermal mass wall was over-heated by outside temperature and solar radiation in a day of May the temperature difference of both surfaces of thermal mass wall surface was indicated $10^{\circ}C$ and inside temperature was observed more than average 22C.

Electrochemical Behavior Depending on Designed-Anode and Cathodes of Hybrid Supercapacitors (하이브리드 슈퍼커패시터의 음극 및 양극 설계에 따른 전기화학적 거동)

  • Shin, Seung-Il;Lee, Byung-Gwan;Ha, Min-Woo;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.774-780
    • /
    • 2019
  • The performance of Li-ion hybrid supercapacitors (asymmetric-type) depends on many factors such as the capacity ratio, material properties, cell designs and operating conditions. Among these, in consideration of balanced electrochemical reactions, the capacity ratio of the negative (anode) to positive (cathode) electrode is one of the most important factors to design the Li-ion hybrid supercapacitors for high energy storing performance. We assemble Li-ion hybrid supercapacitors using activated carbon (AC) as anode material, lithium manganese oxide as cathode material, and organic electrolyte (1 mol L-1 LiPF6 in acetonitrile). At this point, the thickness of the anode electrode is controlled at 160, 200, and 240 ㎛. Also, thickness of cathode electrode is fixed at 60 ㎛. Then, the effect of negative and positive electrode ratio on the electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors is investigated, especially in the terms of capacity and cyclability at high current density. In this study, we demonstrate the relationship of capacity ratio between anode and cathode electrode, and the excellent electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors. The remarkable capability of these materials proves that manipulation of the capacity ratio is a promising technology for high-performance Li-ion hybrid supercapacitors.

Role of Atmospheric Turbulences and Energy Balances in the Atmospheric Surface Layer (접지층에서 대기난류의 역할과 에너지 평형)

  • Kwon, Byung-Hyuk;Kim, Geun-Hoi;Kim, Kwang-Ho;Kang, Dong-Hwan
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • Heat energy exchange is very important processes in the coastal wetland ecosystems. We observed and analyzed the net radiation flux, the sensible heat flux, the latent heat flux and the soil heat flux, which are balanced in the heat energy balance, over a reclaimed land covered with reeds at Goheung, Jeonllanamdo where is horizontally plane. The atmospheric turbulence had been measured in order to estimate the heat transfer during 5 intensive observation periods (IOPs). It was considered that the soil consists of water, fine particles, and vegetation canopy that changes color and density according to the season. We examined the characteristics of the heat flux and the vegetation effect on the air temperature control. It was noted that the heat was transported mainly by latent heat flux in the summer season and the vegetation canopy decreased the daily temperature range due to the heat storage. The air temperature was lower at the IOPs site than near urban area. This showed that the coastal wetland covered with the vegetation control the thermal environment.

  • PDF

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid

  • Mustafa, Azeem;Lougou, Bachirou Guene;Shuai, Yong;Razzaq, Samia;Wang, Zhijiang;Shagdar, Enkhbayar;Zhao, Jiupeng
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.148-158
    • /
    • 2022
  • The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.

Studies on the Preservation of Korean Ginseng by Irradiation -Part II. Effect of Gamma Irradiation on the Physicochemical Properties of Ginseng Powder during the Storage- (방사선(放射線) 조사(照射)에 의(依)한 인삼저장(人蔘貯藏)에 관(關)한 연구(硏究) -제2보(第2報). 감마선(線) 조사(照射)가 인삼분말제품(人蔘粉末製品)의 저장중(貯藏中) 이화학적(理化學的) 특성(特性)에 미치는 영향-)

  • Sung, Hyun-Soon;Park, Myung-Han;Lee, Kwang-Seung;Cho, Han-Ok
    • Applied Biological Chemistry
    • /
    • v.25 no.2
    • /
    • pp.105-109
    • /
    • 1982
  • The effect the physiochemical properties of red and white ginseng powder after $^{60}Co-{\gamma}$ ray irra diationduring the storage for 4 months at $25^{\circ}C$ was investigated. The storage periods and the treatment of irradation at various doses on ginseng powders has no significant effect on the proximate composition and color density of ginseng extract with 50% ethanol. No changes in the contents of saponin and its HPLC patterns were found during the storage. However, a little increase was found in the yield of 50% ethanol extract and Hunter's color value of powder. But generally it was found to be stable in the physicochemical properties of red and white ginseng powder by irradiation of the intensity during the storage.

  • PDF

Quality Characteristics of Milk Porridge (Tarakjuk) Sterilized with Radiation Technology (방사선 조사 기술을 이용하여 제조한 멸균 우유죽(타락죽)의 품질 특성)

  • Han, In-Jun;Park, Jae-Nam;Park, Jin-Gyu;Song, Beom-Seok;Lee, Ju-Woon;Kim, Jae-Hun;Ryu, Hong-Soo;Park, Jeong-Ro;Chun, Soon-Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.6
    • /
    • pp.885-891
    • /
    • 2011
  • We conducted this study to determine the optimum dose of gamma irradiation needed for the sterilization of milk porridge for patients. Milk porridge, known as Tarakjuk, was irradiated with gamma ray at doses of 0, 1, 3, 5, 7, or 10 kGy. The microbial contamination, $D_{10}$ values of isolated microbe spores, color, and viscosity were measured during storage at $35^{\circ}C$. The initial count of total aerobic bacteria was 2.60 log CFU/g in the non-irradiated milk porridge, but coliforms, spore-forming bacteria, yeast, and molds were not detected. The total counts of aerobic and spore-forming bacteria in the non-irradiated and 1 kGy irradiated milk porridge increased with storage period. These microbes were not detected in the milk porridge irradiated with 10 kGy. The $D_{10}$ values of isolated spores from milk porridge were 2.71 kGy (in milk porridge) and 2.21 kGy (in saline solution). All CIE color increased with gamma irradiation, but the sensory value of color did not significantly change. The viscosity of the milk porridge decreased with gamma irradiation and storage period, and the decrease in viscosity with storage period became smaller as the radiation doses increased. Sensory evaluation scores of the milk porridge were above normal (4.0) when irradiated with less than 5 kGy. These results indicate that gamma irradiation could be beneficial for preparing food with higher nutrient density and lower viscosity, especially for gastric tube-fed patients.

The Evaluation of Hydrogenation Properties on $MgH_x-Fe_2O_3$ Composite by Mechanical Alloying (기계적 합금화법으로 제조된 $MgH_x-Fe_2O_3$ 복합재료의 수소화 특성 평가)

  • Seok, Song;Cho, Kyoung-Won;Hong, Hae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.26-31
    • /
    • 2007
  • Hydrogen has a high potential to be a renewable substitute for fossil fuels, because of its high gravimetric energy density and environment friendliness. In particular, Magnesium have attracted much interest since their hydrogen capacity exceeds that of known metal hydrides. One of the approaches to improve the kinetic is addition of metal oxide. In this paper, the effect of $Fe_2O_3$ concentration on the kinetics of Mg hydrogen absorption reaction was investigated. $MgH_x-Fe_2O_3$ composites have been synthesized by hydrogen induced mechanical alloying. The powder synthesized was characterized by XRD, SEM and simultaneous TG, DSC analysis. The hydrogenation behaviors were evaluated by using a sievert's type automatic PCT apparatus. Absorption and desorption kinetics of Mg catalyzed with 5,10 mass% $Fe_2O_3$ are determined at 423, 473, 523, 573, 623K.

An Experiment Study on Electric Vehicle Fire and Fire Response Procedures (전기차 화재 실험 및 대응방안에 관한 연구)

  • Ki-Hun Nam;Jun-Sik Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2024
  • Lithium-ion batteries (LIB) are widely used in various sectors, such as transportation (e.g., electric vehicles (EV)) and energy (e.g., energy storage facilities) due to their high energy density, broad operating temperature (-20 ℃ ~ 60 ℃), and high capacities. LIBs are powerful but fragile on external factors, including pressure, physical damage, overheating, and overcharging, that cause thermal runaway causing fires and explosions. During a LIB fire, a large amount of oxygen is generated from the decomposition of ionogenic materials. A water fire extinguisher that helps with cooling and suffocating must be essentially required at the same time. In fact, however, it is difficult to suppress LIB fires in the case of EVs because a LIB is installed with a battery pack housing that interrupts direct extinguishing by water. Thus, this study aims to investigate effective fire extinguishing measurements for LIB fires by using an EV. Relevant documents, including research articles and reports, were reviewed to identify effective ways of LIBs fire extinguishing. A real-scale fire experiment generating thermal runaway was carried out to figure out the combustion characteristics of EVs. This study revealed that the most effective fire extinguishing measurements for LIB fires are applying fire blankets and water tanks. However, there is still a lack of adequate regulation and guidelines for LIB fire extinguishment. Taking this into account, developing functional fire extinguishment measurements and available regulatory instruments is an urgent issue to secure the safety of firefighters and citizens.

Electrochemical Properties of Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex Alloy Electrodes (Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex 합금 전극의 전기화학적 특성)

  • Song, MyoungYoup;Kwon, IkHyun;Lee, DongSub
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.181-189
    • /
    • 2002
  • A series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22, and 0.30) alloys are prepared and their oystal structure and P-C-T curves are examined. The electrochemical properties of these allqys such as activation conditions, discharge capacity, cycling performance are also investigated. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22 and 0.30) have the C14 Laves phase hexagonal structure. The electrode was activated by the hot-charging treatment. The best activation conditions were the current density 120 mA/g and the hot-charging time 12h at $80^{\circ}C$ in the case of the alloy with x=0.00. The discharge capacity increased rapidly until the fourth cycle and then decreased. The discharge capacity increased again from the 13th cycle, arriving at 234 mAh/g at the 50th cycle. The discharge capacily just after activation decreases with the increase in the amount of the substituted Fe but the cycling performance is improved. The discharge capacity after activation of the alloy with x=0.00 is 157 mAh/g at the current density 120 mA/g. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Fe_{0.15}$ is a good composition with a medium quantity of discharge capacities and a good cycling performance. The ICP analysis of the electrolyte for these electrodes after 50 charge-discharge cycles shows that the concentrations of V and Zr are relatively high. Another series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}M_{0.15}$ (M = Fe, Co, Cu, Mo and Al) alloys are prepared. They also have the C14 Laves phase hexagonal structure. The alloys with M = Co and Fe have relatively larger hydrogen storage capacities. The discharge capacities just after activation are relatively large in the case of the alloys with M = Al and Cu. They are 212 and 170 mAh/g, respectivety, at the current density 120mA/g. The $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Co_{0.15}$ alloy is the best one with a relatively large discharge capacity and a good cycling performance.