Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.12.774

Electrochemical Behavior Depending on Designed-Anode and Cathodes of Hybrid Supercapacitors  

Shin, Seung-Il (Department of Electrical Engineering, Myongji University)
Lee, Byung-Gwan (R&D Center, EUROCELL)
Ha, Min-Woo (Department of Electrical Engineering, Myongji University)
An, Geon-Hyoung (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.12, 2019 , pp. 774-780 More about this Journal
Abstract
The performance of Li-ion hybrid supercapacitors (asymmetric-type) depends on many factors such as the capacity ratio, material properties, cell designs and operating conditions. Among these, in consideration of balanced electrochemical reactions, the capacity ratio of the negative (anode) to positive (cathode) electrode is one of the most important factors to design the Li-ion hybrid supercapacitors for high energy storing performance. We assemble Li-ion hybrid supercapacitors using activated carbon (AC) as anode material, lithium manganese oxide as cathode material, and organic electrolyte (1 mol L-1 LiPF6 in acetonitrile). At this point, the thickness of the anode electrode is controlled at 160, 200, and 240 ㎛. Also, thickness of cathode electrode is fixed at 60 ㎛. Then, the effect of negative and positive electrode ratio on the electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors is investigated, especially in the terms of capacity and cyclability at high current density. In this study, we demonstrate the relationship of capacity ratio between anode and cathode electrode, and the excellent electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors. The remarkable capability of these materials proves that manipulation of the capacity ratio is a promising technology for high-performance Li-ion hybrid supercapacitors.
Keywords
energy; energy storage device; supercapacitor; capacity ratio; electrode thickness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Simon, Y. Gogotsi and B. Dunn, Science, 343, 1210 (2014).   DOI
2 Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 192 (2017).   DOI
3 G.-H. An, S. N. Cha and J. I. Sohn, Appl. Surf. Sci., 467, 1157 (2019).   DOI
4 G.-H. An, S.N. Cha and H.-J. Ahn, Appl. Surf. Sci., 478, 435 (2019).   DOI
5 G.-H. An and H.-J. Ahn, Appl. Surf. Sci., 473, 77 (2019).   DOI
6 G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 41, 797 (2012).   DOI
7 G.-H. An, Y.-G. Lee and H.-J. Ahn, J. Alloys Compd., 746, 177 (2018).   DOI
8 G.-H. An, H. Kim and H.-J. Ahn, ACS Appl. Mater. Interfaces, 10, 6235 (2018).   DOI
9 J. Zeng, M.i Li, X. Li, C. Chen, D. Xiong, L. Dong, D. Li, A. Lushington and X. Sun, Appl. Surf. Sci., 317, 884 (2014).   DOI
10 G.-H. An, D.-Y. Lee and H.-J. Ahn, J. Mater. Chem. A, 5, 19714 (2017).   DOI
11 W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia and J. Liu, Adv. Sci., 4, 1600539 (2017)   DOI
12 Y.-P. Lin and N.-L. Wu, J. Power Sources, 196, 851 (2011).   DOI
13 O. Hanna, S. Luski, T. Brousse and D. Aurbach, J. Power Sources, 354, 148 (2017).   DOI
14 Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 28, 182 (2018).   DOI
15 G.-H. An, H. Kim and H.-J. Ahn, J. Ind. Eng. Chem., 68, 146 (2018).   DOI
16 G.-H. An, D.-Y. Lee and H.-J. Ahn, ACS Appl. Mater. Interfaces, 9, 12478 (2017).   DOI