• Title/Summary/Keyword: Energy resource

Search Result 2,064, Processing Time 0.029 seconds

Comparison of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time (열 성형 온도 및 시간에 따른 탄소섬유 강화 재활용 PET 복합재료의 계면 및 기계적 물성 비교)

  • Baek, Yeong-Min;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2017
  • Currently, since carbon fiber reinforced plastics (CFRPs) are lightweight and have excellent physical properties, their demand has increased dramatically. Many works have studied the CFRPs based on recycled thermoplastics. In this study, the applicability of recycled composite was evaluated using recycled polyethylene terephthalate (PET). PET was collected from waste materials used in beverage bottles and processed to produce PET films. Optimal thermoforming temperature and time were analyzed by comparing the mechanical properties with forming temperature and time difference for producing PET films. CF mat and PET film were used to determine the suitable parameters for the optimum thermoforming of CF/PET composites. The mechanical properties of each thermoforming condition were verified by bending test. The degree of impregnation of the PET film into the CF mat was evaluated by cross-sectional photographs, whereas the interfacial properties were evaluated by interlaminar shear strength (ILSS). Ultimately, it was confirmed that the thermoforming condition for forming the CF/recycled PET composites yielding the optimal mechanical and interfacial properties was at $270^{\circ}C$ for 5 minutes.

The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener (경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • Demand of glass fiber reinforced composites (GFRC) increased with developing aircraft and defense industries using resin transfer molding (RTM) process to produce complex product. In this research, wetting, interfacial, and mechanical properties were evaluated with different Cross-linking Density by Molecular Weight of Hardener. Epoxy resin as matrices was used bisphenol-A type and amine-type hardeners with different molecular weight. Specimens were manufactured via RTM and wetting property of resin and glass fiber (GF) mat was evaluated to viscosity of epoxy and injection time of epoxy matrix. Mechanical property of GFRC was determined via flexural strength whereas interfacial properties were determined by interlaminar shear strength (ILSS) and interfacial shear strength (IFSS). The difference in mechanical property depends upon the fiber weight fraction (wt %) of GFRC by RTM as well as the different Molecular Weight of Hardener.

Electromagnetic energy as an impact factor on life processes of a biological object of a plant origin

  • Radko, I.;Nalyvaiko, V.;Okushko, O.
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • The foremost problem in the agricultural industry in Ukraine is the issue of improving its energy resources efficiency. The existence of this problem is related to the substantial technological inferiority of the industry to those present in the developed countries, especially in terms of creation of no-waste production technologies of agricultural products. The direct effect on the solving of this issue has the necessity to ensure minimal energy costs during treatment of plant objects. This article presents the research results on the effect of electromagnetic energy on activation of plants development. It was found that each such object has its own individual energy resource and that forceful increase of the latter has specific maximum values and gives rise to the plant development process. At the same time, the implementation of the research results is hindered by some factors, among the most major of which are the following: lack of reliable and complete data on the bioenergy resources of plants, its "natural" chart; unavailability of research on the energy sources interaction processes and its effect on the physiological potential of biological objects, at least at the level of low series, absence of the appropriate electrotechnical equipment, including electromagnetic energy sources.

Study of the Recycling Policy to Make Efficient Resource-recycling Society (효율적(效率的)인 자원순환사회 형성을 위한 자원재활용(資源再活用) 정책 고찰(考察))

  • Ryu, Su-Ho
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.3-15
    • /
    • 2009
  • To accomplish the greenhouse gas reduction which is over core unit project of the "Green growth" policy and "Resource circulation society", it is important to maintain proper balance and complement between energy recovery from waste and material recycling. This research(study) examined the related policies on the past of korea and foreign country, and also "The 4th resource recycling master plan" and "Energy recovery from waste plan" to provide advisable direction for resource recycling policy. The results of the research(study) showed that there were no significant difference between korea and developed foreign countries waste management policies. But in German policy, energy recovery from waste and pre-treatment are importantly considered and highly required for permission. Under current circumstance in korea, recycling will be more difficult than in the past. According to "The 4th resource recycling master plan", film type of synthetic resin was not sustainable recycled material in substance."Energy recovery from waste plan", proved that the energy recovery from RDF/RPF have lower efficiency than regular incineration generation and substance recycling. To solve these problems, the energy and remainder heat recovery must be generalized to "Energy recovery" concept and institutional improvement such as LCA(Life Cycle Assessment) system are need to support it. And also technology development to extract synthetic polymer by dissolved film type of synthetic resin must be provided.

The Economics Value of Electric Vehicle Demand Resource under the Energy Transition Plan (에너지전환 정책하에 전기차 수요자원의 경제적 가치 분석: 9차 전력수급계획 중심으로)

  • Jeon, Wooyoung;Cho, Sangmin;Cho, Ilhyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.2
    • /
    • pp.237-268
    • /
    • 2021
  • As variable renewable sources rapidly increase due to the Energy Transition plan, integration cost of renewable sources to the power system is rising sharply. The increase in variable renewable energy reduces the capacity factor of existing traditional power capacity, and this undermines the efficiency of the overall power supply, and demand resources are drawing attention as a solution. In this study, we analyzed how much electric vehicle demand resouces, which has great potential among other demand resources, can reduce power supply costs if it is used as a flexible resource for renewable generation. As a methodology, a stochastic form of power system optimization model that can effectively reflect the volatile characteristics of renewable generation is used to analyze the cost induced by renewable energy and the benefits offered by electric vehicle demand resources. The result shows that virtual power plant-based direct control method has higher benefits than the time-of-use tariff, and the higher the proportion of renewable energy is in the power system, the higher the benefits of electric vehicle demand resources are. The net benefit after considering commission fee for aggregators and battery wear-and-tear costs was estimated as 67% to 85% of monthly average fuel cost under virtual power plant with V2G capability, and this shows that a sufficient incentive for market participation can be offered when a rate system is applied in which these net benefits of demand resources are effectively distributed to consumers.

Solar Power Generation Forecast Model Using Seasonal ARIMA (SARIMA 모형을 이용한 태양광 발전량 예보 모형 구축)

  • Lee, Dong-Hyun;Jung, Ahyun;Kim, Jin-Young;Kim, Chang Ki;Kim, Hyun-Goo;Lee, Yung-Seop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.59-66
    • /
    • 2019
  • New and renewable energy forecasts are key technology to reduce the annual operating cost of new and renewable facilities, and accuracy of forecasts is paramount. In this study, we intend to build a model for the prediction of short-term solar power generation for 1 hour to 3 hours. To this end, this study applied two time series technique, ARIMA model without considering seasonality and SARIMA model with considering seasonality, comparing which technique has better predictive accuracy. Comparing predicted errors by MAE measures of solar power generation for 1 hour to 3 hours at four locations, the solar power forecast model using ARIMA was better in terms of predictive accuracy than the solar power forecast model using SARIMA. On the other hand, a comparison of predicted error by RMSE measures resulted in a solar power forecast model using SARIMA being better in terms of predictive accuracy than a solar power forecast model using ARIMA.

Resource Allocation for Heterogeneous Service in Green Mobile Edge Networks Using Deep Reinforcement Learning

  • Sun, Si-yuan;Zheng, Ying;Zhou, Jun-hua;Weng, Jiu-xing;Wei, Yi-fei;Wang, Xiao-jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2496-2512
    • /
    • 2021
  • The requirements for powerful computing capability, high capacity, low latency and low energy consumption of emerging services, pose severe challenges to the fifth-generation (5G) network. As a promising paradigm, mobile edge networks can provide services in proximity to users by deploying computing components and cache at the edge, which can effectively decrease service delay. However, the coexistence of heterogeneous services and the sharing of limited resources lead to the competition between various services for multiple resources. This paper considers two typical heterogeneous services: computing services and content delivery services, in order to properly configure resources, it is crucial to develop an effective offloading and caching strategies. Considering the high energy consumption of 5G base stations, this paper considers the hybrid energy supply model of traditional power grid and green energy. Therefore, it is necessary to design a reasonable association mechanism which can allocate more service load to base stations rich in green energy to improve the utilization of green energy. This paper formed the joint optimization problem of computing offloading, caching and resource allocation for heterogeneous services with the objective of minimizing the on-grid power consumption under the constraints of limited resources and QoS guarantee. Since the joint optimization problem is a mixed integer nonlinear programming problem that is impossible to solve, this paper uses deep reinforcement learning method to learn the optimal strategy through a lot of training. Extensive simulation experiments show that compared with other schemes, the proposed scheme can allocate resources to heterogeneous service according to the green energy distribution which can effectively reduce the traditional energy consumption.

Estimation of Reference Wind Speeds in Offshore of the Korean Peninsula Using Reanalysis Data Sets (재해석자료를 이용한 한반도 해상의 기준풍속 추정)

  • Kim, Hyun-Goo;Kim, Boyoung;Kang, Yong-Heack;Ha, Young-Cheol
    • New & Renewable Energy
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • To determine the wind turbine class in the offshore of the Korean Peninsula, the reference wind speed for a 50-y return period at the hub height of a wind turbine was estimated using the reanalysis data sets. The most recent reanalysis data, ERA5, showed the highest correlation coefficient (R) of 0.82 with the wind speed measured by the Southwest offshore meteorological tower. However, most of the reanaysis data sets except CFSR underestimated the annual maximum wind speed. The gust factor of converting the 1 h-average into the 10 min-average wind speed was 1.03, which is the same as the WMO reference, using several meteorological towers and lidar measurements. Because the period, frequency, and path of typhoons invading the Korean Peninsula has been changing owing to the climate effect, significant differences occurred in the estimation of the extreme wind speed. Depending on the past data period and length, the extreme wind speed differed by more than 30% and the extreme wind speed decreased as the data period became longer. Finally, a reference wind speed map around the Korean Peninsula was drawn using the data of the last 10 years at the general hub-height of 100 m above the sea level.

Mutual Application of Met-Masts Wind Data on Simple Terrain for Wind Resource Assessment (풍력자원평가를 위한 단순지형에서의 육상 기상탑 바람 데이터의 상호 적용)

  • Son, Jin-Hyuk;Ko, Kyung-Nam;Huh, Jong-Chul;Kim, In-Haeng
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.31-39
    • /
    • 2017
  • In order to examine if met-masts wind data can exchange each other for wind resource assessment, an investigation was carried out in Kimnyeong and Haengwon regions of Jeju Island. The two regions are both simple terrain and 4.31 km away from each other. The one-year wind speed data measured by 70 m-high anemometers of each met-mast of the two regions were analysed in detail. Measure-Correlate-Predict (MCP) method was applied to the two regions using the 10-year Automatic Weather System (AWS) wind data of Gujwa region for creating 10-year Wind Statistics by running WindPRO software. The two 10-year Wind Statistics were applied to the self-met mast point for self prediction of Annual Energy Production (AEP) and Capacity Factor (CF) and the each other's met mast point for mutual prediction of them. As a result, when self-prediction values were reference, relative errors of mutual prediction values were less than 1% for AEP and CF so that met masts wind data under the same condition of this study could exchange each other for estimating accurate wind resource.

An Analysis of Attitude and Behavior for Energy-Saving by the Purchase Style (구매행동유형에 따른 에너지절약 태도와 절약행동 분석)

  • Huh, Kyung-Ok
    • Journal of Family Resource Management and Policy Review
    • /
    • v.13 no.3
    • /
    • pp.17-30
    • /
    • 2009
  • This study investigated the relationship between style of purchase behavior and search information, attitude, and behavior for energy saving. In addition, this paper classified several consumer groups based on their different styles of purchase behavior and investigated whether those groups differ in attitude and behavior for energy saving. The following is a summary of the main results. First, consumers were classified according to style of purchase behavior into a rational consumer group, a fashion- or brand-oriented group, a group uninterested in consumption, and a neutrally oriented group. Second, there were no significant differences among the four consumer groups in the amount of information search and the level of communication with other consumers related to energy-saving information; however, there were significant differences in terms of the information sources used. For example, the neutrally oriented group was more likely to use more objective information sources. Third, the level of attitude toward energy saving was more likely to be active when consumers were old and rational. Consumers with a high income, education and experience in energy saving, and an active attitude were more likely to be active in energy saving, especially in the disposal stage of purchase. Finally, attitude toward energy saving was the most influential factor in the level of energy-saving behavior.

  • PDF