DOI QR코드

DOI QR Code

The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener

경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향

  • Park, Ha-Seung (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University) ;
  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University) ;
  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University) ;
  • Baek, Yeong-Min (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University) ;
  • Kwon, Dong-Jun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University)
  • Received : 2017.05.05
  • Accepted : 2017.06.30
  • Published : 2017.06.30

Abstract

Demand of glass fiber reinforced composites (GFRC) increased with developing aircraft and defense industries using resin transfer molding (RTM) process to produce complex product. In this research, wetting, interfacial, and mechanical properties were evaluated with different Cross-linking Density by Molecular Weight of Hardener. Epoxy resin as matrices was used bisphenol-A type and amine-type hardeners with different molecular weight. Specimens were manufactured via RTM and wetting property of resin and glass fiber (GF) mat was evaluated to viscosity of epoxy and injection time of epoxy matrix. Mechanical property of GFRC was determined via flexural strength whereas interfacial properties were determined by interlaminar shear strength (ILSS) and interfacial shear strength (IFSS). The difference in mechanical property depends upon the fiber weight fraction (wt %) of GFRC by RTM as well as the different Molecular Weight of Hardener.

유리섬유(GF) 강화 복합재료는 금속에 비해 경량화의 장점으로 인해 기체 부품 산업의 높은 성장률과 방산 산업의 발전으로 수요는 증가되고 있으며 제품의 형태를 다양하게 제작할 수 있는 RTM 공정으로 산업적으로 이용되고 있다. 본 연구에서는 경화제의 분자량에 의한 가교 밀도 차이에 따라 변화되는 RTM의 성형성과 복합재료의 기계적 물성 및 계면 물성의 차이를 관찰하고자 하였다. 이를 위해 동일한 에폭시를 사용하였으며 유사한 화학 구조의 경화제를 이용하였다. 시편은 RTM 공법으로 제작하였으며 기지의 특성을 알아보기 위해 점도 측정 및 기지 주입시간을 측정하였다. 유리 섬유/에폭시 복합재료의 기계적 물성을 실험하여 굴곡 강도를 측정하였으며 계면 물성을 평가하기 위해 층간전단강도(ILSS)와 계면전단강도(IFSS)를 측정하였다. RTM 공정 시 기지의 점도에 의해 섬유의 함침정도에 따라 복합재료의 섬유 무게 분율(wt %)은 변화되고 이에 따라 유리섬유/에폭시 복합재료의 기계적 물성의 차이가 확인되었다.

Keywords

References

  1. Zhang, L., Bai, Y., Chen, W., Ding, F., and Fang, H., "Thermal Performance of Modular GFRP Multicellular Structures Assembled with Fire Resistant Panels," Composite Structures, Vol. 172, 2017, pp. 22-33. https://doi.org/10.1016/j.compstruct.2017.03.076
  2. Ascione, F., Lamberti, M., Razaqpur, A.G., and Spadea, S., "Strength and Stiffness of Adhesively Bonded GFRP Beam-column Moment Resisting Connections," Composite Structures, Vol. 160, 2017, pp. 1248-1257. https://doi.org/10.1016/j.compstruct.2016.11.021
  3. Yun, Y.M., Seo, M.W., Koo, G.H., Ra, H.W., Yoon, S.J., and Kim, Y.K., "Pyrolysis Characteristics of GFRP (Glass Fiber Reinforced Plastic) under Non-isothermal Conditions," Fuel, vol. 137, 2014, pp. 321-327. https://doi.org/10.1016/j.fuel.2014.08.001
  4. Davima, J.P., Reisa, P., and Antonio, C.C., "Experimental Study of Drilling Glass Fiber Reinforced Plastics (GFRP) Manufactured by Hand Lay-up," Composites Science and Technology, Vol. 64, 2004, pp. 289-297. https://doi.org/10.1016/S0266-3538(03)00253-7
  5. Chang, W., and Kikuchi, N., "Analysis of Non-isothermal Mold Filling Molding (RTM) and Structural Reaction," Computational Mechanics, Vol. 16, 1995, pp. 22-35. https://doi.org/10.1007/BF00369882
  6. Bayldon, J.M., and Daniel, I.M., "Flow Modeling of the VARTM Process Including Progressive Saturation Effects," Composites: Part A, Vol. 40, 2009, pp. 1044-1052. https://doi.org/10.1016/j.compositesa.2009.04.008
  7. Naik, N.K., Sirisha, M., and Inani, A., "Permeability Characterization of Polymer Matrices Composites by RTM/VARTM," Progress in Aerospace Sciences, Vol. 65, 2014, pp. 22-40. https://doi.org/10.1016/j.paerosci.2013.09.002
  8. Poodts, E., Minak, G., Mazzocchetti, L., and Giorgini, L., "Fabrication, Process Simulation and Testing of a Thick CFRP Component using the RTM Process," Composites: Part B, Vol. 56, 2014, pp. 673-680. https://doi.org/10.1016/j.compositesb.2013.08.088
  9. Grujicic, M., Chittajallu, K.M., and Walsh, S., "Non-isothermal Preform Infiltration during the Vacuum-assisted Resin Transfer Molding (VARTM) Process," Applied Surface Science, Vol. 245, 2005, pp. 51-64. https://doi.org/10.1016/j.apsusc.2004.09.123
  10. Bender, D., Schuster, J., and Heider, D., "Flow Rate Control during Vacuum-assisted Resin Transfer Molding (VARTM) Processing," Composites Science and Technology, Vol. 66, 2006, pp. 2265-2271. https://doi.org/10.1016/j.compscitech.2005.12.008
  11. Kim, P.J., and Lee, D.G., "Surface Quality and Shrinkage of the Composite Bus Housing Panel Manufactured by RTM," Composite Structures, Vol. 57, 2002, pp. 211-220. https://doi.org/10.1016/S0263-8223(02)00068-5
  12. Kwon, D.-J., Shin, P.-S., Kim, J.-H., Wang, Z.-J., DeVries, K.L., and Park, J.-M., "Detection of Damage in Cylindrical Parts of Carbon Fiber/epoxy Composites Using Electrical Resistance (ER) Measurements," Composites Part B, Vol. 99, 2016, pp. 528-532. https://doi.org/10.1016/j.compositesb.2016.06.050
  13. Shin, P.-S., Wang, Z.-J., Kwon, D.-J., Choi, J.-Y., Sung, I., Jin, D.-S., Kang, S.-W., Kim, J.-C., DeVries, K.L., and Park, J.-M., "Optimum Mixing Ratio of Epoxy for Glass Fiber Reinforced Composites with High Thermal Stability," Composites Part B, Vol. 79, 2015, pp. 132-137. https://doi.org/10.1016/j.compositesb.2015.04.032
  14. Wang, Z.-J., Kwon, D.-J., Choi, J.-Y., Shin, P.-S., Yi, J.-W., Byun, J.-H., Lee, H.-I., Park, J.-K., DeVries, K.L., and Park, J.-M., "Inherent and Interfacial Evaluations of Carbon Nanotubes/epoxy Composites and Single Carbon Fiber at Different Temperatures," Composites Part B, Vol. 91, 2016, pp. 111-118. https://doi.org/10.1016/j.compositesb.2015.12.036
  15. Ravey, C., Ruiz, E., and Trochu, F., "Determination of the Optimal Impregnation Velocity in Resin Transfer Molding by Capillary Rise Experiments and Infrared Thermography," Composites Science and Technology, Vol. 99, 2014, pp. 96-102. https://doi.org/10.1016/j.compscitech.2014.05.019