• Title/Summary/Keyword: Energy metabolism

Search Result 909, Processing Time 0.031 seconds

The +1316 T/T Genotype in the Exon 3 of Uncoupling Protein Gene is Associated with Daily Percent Lay in Korean Native Chicken (한국 재래 닭의 Uncoupling Protein 유전자 Exon 3에서의 +1316 T/T 유전자형이 산란율에 미치는 효과 분석)

  • Oh J. D.;Lee J. H.;Hong Y. S.;Lee S. J.;Lee S. G.;Kong H. S.;Sang B. D.;Choi C. H.;Cho B. W.;Jeon G. J.;Lee H. K.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.4
    • /
    • pp.239-244
    • /
    • 2005
  • Uncoupling protein(UCP) is expressed exclusively in brown adipose tissue(BAT). It is blown to uncouple phosphorylation from oxidation and hence to be involved in energy metabolism and heat production, especially under cold exposure. In the present study, we identified single nucleotide polymorphism(SNP) in exon 3 of avUCP gene in Korean native chicken(KNC) population. It was detected a SNP T+1316C in exon 3 of avUCP gene by sequence analysis in KNC population. For PCR-RFLP analysis of the SNP T+1316C, used by AP III restriction enzyme. The result of PCR-RFLP analysis showed that allele T has two fragments of 255 bp and 86 bp, and allele C has only one fragment of 341 bp. The genotype frequencies were TT type, 0.7875; TC type, 0.1875 and CC type, 0.025; and the frequencies of allele T and C were 0.881 and 0.119, respectively in KNC population. Next study was conducted to investigate the effect of the SNP in avUCP gene on economic traits in the KNC population. The TT genotype had a significant higher daily percent lay(84.61) than CC genotype(p<0.05) in KNC population. This study may be useful for genetic studies of avCUP gene and selection on daily percent lay of KNC.

Effects of GyeongshinhaeGihwan 1(GGT1) on the Expression of Obesity-related Genes in Obese Male hGHTg Rats (경신해지환(輕身解脂丸) (GGT1)이 형질전환 비만모델 hGHTg 수컷 쥐의 비만관련 유전자 발현에 미치는 영향)

  • Jung Yang-Sam;Yoon Mi-Chung;Kim Gyeong-Cheol;Shin Soon-Shik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.93-97
    • /
    • 2006
  • To investigate whether GyeongshinhaeGihwan 1(GGT1), an anti-obesity herbal medicine widely used in oriental medicine, regulates the expression of obesity-related genes, we measured the changes in mRNA levels of these genes by GGT1 in human growth hormone transgenic (hGHTg) obese male rats, and these effects by GGT1 were compared with those of reductil (RD), an anti-obesity drug approved by FDA. Rats received once daily oral administrations of autoclaved water, RD, or GGT1 for 8 weeks. At the end of study, rats were sacrificed and tissues were harvested. Total RNA from adipose tissue, liver and kidney was prepared and the mRNA levels for LPL (lipoprotein lipase), PPAR $\gamma$ (peroxisome proliferator activated receptor-gamma), PPAR$\delta$ (peroxisome proliferator activated receptor-delta), leptin, TNF$\alpha$ (tumor necrosis factor-alpha), and internal standard G3PDH (glyceraldehyde-3- phosphate dehydrogenase) were analyzed by RT-PCR. PPAR$\gamma$ mRNA levels of liver and kidney were decreased in drug-treated groups compared with control group and the decrease of PPAR$\gamma$ expression was more prominent in GGT1 group than in RD group, suggesting that GGT1 is effective in the inhibition of adipogenesis and lipid storage by decreasing the PPAR$\gamma$ expression. In contrast, PPAR$\delta$ mRNA levels of adipose tissue and kidney were increased by RD and GGT1 , and the magnitudes of increase were higher in GGT1 group than in RD group, indicating that GGT1 stimulates fatty acid oxidation and energy metabolism by activating PPAR$\delta$ expression, Compared with control and RD groups, GGT1 group had higher concentrations of serum leptin, a well-known inhibitor of appetite. However, The mRNA levels of leptin, LPL, and TNF$\alpha$ were not changed by GGT1 and RD, compared with DW. These results demonstrate that GGT1 not only decreases PPAR$\gamma$ expression of liver and kidney, but also increases PPAR$\delta$ expression of adipose tissue and kidney, leading to the regulation of obesity and that these effects were more pronounced in GGT1 group compared with RD group. In addition, GGT1 seems to prevent obesity by increasing the serum leptin levels.

Dietary Exposure to Transgenic Rice Expressing the Spider Silk Protein Fibroin Reduces Blood Glucose Levels in Diabetic Mice: The Potential Role of Insulin Receptor Substrate-1 Phosphorylation in Adipocytes

  • Park, Ji-Eun;Jeong, Yeon Jae;Park, Joon Beom;Kim, Hye Young;Yoo, Young Hyun;Lee, Kwang Sik;Yang, Won Tae;Kim, Doh Hoon;Kim, Jong-Min
    • Development and Reproduction
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 2019
  • Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance (IR). T2DM is correlated with obesity and most T2DM medications have been developed for enhancing insulin sensitivity. Silk protein fibroin (SPF) from spiders has been suggested as an attractive biomaterial for medical purposes. We generated transgenic rice (TR) expressing SPF and fed it to diabetic $BKS.Cg-m+/+Lepr^{db}$ mice to monitor the changes in blood glucose levels and adipose tissue proteins associated with energy metabolism and insulin signaling. In the present study, the adipocyte size in abdominal fat in TR-SPF-fed mice was remarkably smaller than that of the control. Whereas the adenosine monophosphate-activated protein kinase (AMPK)-activated protein kinase and insulin receptor substrate 1 (IRS1) protein levels were increased in abdominal adipose tissues after TR-SPF feeding, levels of six-transmembrane protein of prostate 2 (STAMP2) proteins decreased. Phosphorylation of AMPK at threonine 172 and IRS1 at serine 307 and tyrosine 632 were both increased in adipose tissues from TR-SPF-fed mice. Increased expression and phosphorylation of IRS1 at both serine 307 and tyrosine 632 in adipose tissues indicated that adipocytes obtained from abdominal fat in TR-SPF-fed mice were more susceptible to insulin signaling than that of the control. STAMP2 protein levels decreased in adipose tissues from TR-SPF-fed mice, indicating that STAMP2 proteins were reducing adipocytes that were undergoing lipolysis. Taken together, this study showed that TR-SPF was effective in reducing blood glucose levels in diabetic mice and that concurrent lipolysis in abdominal adipocytes was associated with alterations of AMPK, IRS1, and STAMP2. Increased IRS1 expression and its phosphorylation by TR-SFP were considered to be particularly important in the induction of lipolysis in adipocytes, as well as in reducing blood glucose levels in this animal model.

Mitochondrial OXPHOS genes provides insights into genetics basis of hypoxia adaptation in anchialine cave shrimps

  • Guo, Huayun;Yang, Hao;Tao, Yitao;Tang, Dan;Wu, Qiong;Wang, Zhengfei;Tang, Boping
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1169-1180
    • /
    • 2018
  • Cave shrimps from the genera Typhlatya, Stygiocaris and Typhlopatsa (TST complex) comprises twenty cave-adapted taxa, which mainly occur in the anchialine environment. Anchialine habitats may undergo drastic environmental fluctuations, including spatial and temporal changes in salinity, temperature, and dissolved oxygen content. Previous studies of crustaceans from anchialine caves suggest that they have possessed morphological, behavioral, and physiological adaptations to cope with the extreme conditions, similar to other cave-dwelling crustaceans. However, the genetic basis has not been thoroughly explored in crustaceans from anchialine habitats, which can experience hypoxic regimes. To test whether the TST shrimp-complex hypoxia adaptations matched adaptive evolution of mitochondrial OXPHOS genes. The 13 OXPHOS genes from mitochondrial genomes of 98 shrimps and 1 outgroup were examined. For each of these genes was investigated and compared to orthologous sequences using both gene (i.e. branch-site and Datamonkey) and protein (i.e. TreeSAAP) level approaches. Positive selection was detected in 11 of the 13 candidate genes, and the radical amino acid changes sites scattered throughout the entire TST complex phylogeny. Additionally, a series of parallel/convergent amino acid substitutions were identified in mitochondrial OXPHOS genes of TST complex shrimps, which reflect functional convergence or similar genetic mechanisms of cave adaptation. The extensive occurrence of positive selection is suggestive of their essential role in adaptation to hypoxic anchialine environment, and further implying that TST complex shrimps might have acquired a finely capacity for energy metabolism. These results provided some new insights into the genetic basis of anchialine hypoxia adaptation.

Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharobutylicum

  • Miguel, Michelle A.;Lee, Sung Sill;Mamuad, Lovelia L.;Choi, Yeon Jae;Jeong, Chang Dae;Son, Arang;Cho, Kwang Keun;Kim, Eun Tae;Kim, Sang Bum;Lee, Sang Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1083-1095
    • /
    • 2019
  • Butyrate is known to play a significant role in energy metabolism and regulating genomic activities that influence rumen nutrition utilization and function. Thus, this study investigated the effects of an isolated butyrate-producing bacteria, Clostridium saccharobutylicum, in rumen butyrate production, fermentation parameters and microbial population in Holstein-Friesian cow. An isolated butyrate-producing bacterium from the ruminal fluid of a Holstein-Friesian cow was identified and characterized as Clostridium saccharobutylicum RNAL841125 using 16S rRNA gene sequencing and phylogenetic analyses. The bacterium was evaluated on its effects as supplement on in vitro rumen fermentation and microbial population. Supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum increased (p < 0.05) microbial crude protein, butyrate and total volatile fatty acids concentration but had no significant effect on $NH_3-N$ at 24 h incubation. Butyrate and total VFA concentrations were higher (p < 0.05) in supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum compared with control, with no differences observed for total gas production, $NH_3-N$ and propionate concentration. However, as the inclusion rate (CFU/ml) of C. saccharobutylicum was increased, reduction of rumen fermentation values was observed. Furthermore, butyrate-producing bacteria and Fibrobacter succinogenes population in the rumen increased in response with supplementation of C. saccharobutylicum, while no differences in the population in total bacteria, protozoa and fungi were observed among treatments. Overall, our study suggests that supplementation with $10^6CFU/ml$ C. saccharobutylicum has the potential to improve ruminal fermentation through increased concentrations of butyrate and total volatile fatty acid, and enhanced population of butyrate-producing bacteria and cellulolytic bacteria F. succinogenes.

Salicylate Can Enhance Osteogenic Differentiation of Human Periosteum-derived Mesenchymal Stem Cells (Salicylate가 성체줄기세포의 골분화에 미치는 영향)

  • Kim, Bo Gyu;Lee, A ram;Lee, Bo Young;Shim, Sungbo;Moon, Dong kyu;Hwang, Sun-Chul;Byun, June-Ho;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1455-1460
    • /
    • 2018
  • Due to a rapidly expanding aging population, the incidence of degenerative bone disease has increased, and efforts to handle the issue using regenerative medicine have become more important. In order to control various bone diseases such as osteoarthritis and osteoporosis, regenerative medicine utilizing adult stem cells has been extensively studied. And it is now clear that the mitochondrial energy metabolism, oxidative phosphorylation, is important for the process of stem cell differentiation. Interestingly, a recent study reported that salicylate promotes mitochondrial biogenesis by regulating the expression of $PGC-1{\alpha}$ in murine cells. However, the possible effects of salicylate on osteogenic differentiation through increased mitochondrial biogenesis in stem cells remain unknown. Thus, here we investigated whether salicylate could influence osteogenic differentiation and mitochondrial biogenesis of periosteum-derived mesenchymal stem cells (POMSCs). We found that salicylate treatments of POMSCs undergoing osteogenic differentiation increased the activity of alkaline phosphatase, a well-known early marker of bone cell differentiation. In addition, we observed that mitochondrial mass was increased by salicylate treatments in POMSCs. Together, these results indicate that salicylate can enhance osteogenic differentiation and mitochondrial biogenesis in POMSCs. Therefore, the findings in this study suggest that small molecules augmenting mitochondrial function such as salicylate can be a novel modulator for osteogenic differentiation and regenerative medicine.

Changes in Miscanthus sacchariflorus Growth and Heading Rate Influenced by Water Stress Treatment at Reproductive Growth Stage (생식생장기 수분스트레스 처리가 억새의 출수율 및 생육 변화에 미치는 영향)

  • Lee, Ji-Eun;Cha, Young-Lok;Moon, Youn-Ho;Kim, Kwang-Soo;Kwon, Da-Eun;Kang, Yong-Ku
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.390-398
    • /
    • 2018
  • Miscanthus is a perennial energy plant that reproduces via rhizomes and has C4 metabolism. The flowering pattern of a wild type M. sacchariflorus (WTM) is affected by environmental conditions such as photoperiod and soil water status. Geodae-Uksae 1 (Geodea), which is a new M. sacchariflorus cultivar, has a lower heading rate than WMS; however the mechanism with why this happens is unknown. To confirm the effects of drought or waterlogging stresses on the growth of WTM and Geodea at the reproductive stage, we investigated variations in morphological characteristics and nutrient contents of the two Miscanthus species after four months of three water treatments. Morphological traits of the two Miscanthus species under the drought condition were similar to those under the control condition. But, the height of Geodea increased by 30% in response to the waterlogging stress. In WTM, the heading rate under the drought condition was lowest, while there was no significant difference between the waterlogging and control conditions. In the two Miscanthus species, nutrient contents, such as sucrose, total N, $P_2O_5$, K and Mg, were the highest under the drought condition, wherea Ca and Mg contents under the waterlogging condition were more than three times lower than those under the drought condition. The current study results showed that drought stress accelerated senescence and then inhibited nutrient mobilization in WTM, while waterlogging stress promoted the growth. This study is the first report to confirm that waterlogging stress promotes flowering of M. sacchariflorus.

Effect of Feeding on Postlarvae of Pacific White Shrimp, Litopenaeus vannamei during the Acclimation Process to Low Salinities in Seawater (해수 저염분 순치과정에서 먹이섭취가 흰다리새우, Litopenaeus vannamei 유생에 미치는 영향)

  • Kim, Su Kyoung;Shim, Na Young;Cho, Ji-Hyun;Kim, Jong Hyun;Kim, Su-Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.377-384
    • /
    • 2018
  • This study focused on the effects of feeding on postlarvae of shrimp, Litopenaeus vannamei, during the identified acclimation time to low salinity. A total of 5 different salinity groups with or without feeding (32, 24, 16, 8, and 2 psu, 1 liter, triplicates) were prepared, and 30 shrimp were settled at PL21 (postlarvae) and placed in each group. After 24 hours of the experimentation process, the survival rate of the fed and starved groups was observed to be lower in the 2 psu group compared to other salinity groups, with the rate of 86.6% and 81.1%, respectively. The condition index of glucose and triglyceride, which are important factors for osmoregulation and as energy sources, was 4.2-7.6 times and 2.7-3.4 times higher in the fed groups than the starved groups at all the levels of salinities. The creatine level increased by 1.1-1.5 times in the starved groups as compared to the fed groups. Likewise, the activity of all the digestive enzymes like, lipase, ${\alpha}$-amylase, trypsin, and alkaline protease were clearly higher in the fed groups (ANOVA, p<0.05). Apparently, it was observed that feeding is effective for the postlarvae of shrimp, which shows a characteristic fast metabolism and larval development, during the acclimation period to low salinity.

Bone mineral density in type 2 diabetic patients aged 50 years or older in men and postmenopausal women in Korea

  • Cho, Jeong-Ran;Chung, Dong Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.197-207
    • /
    • 2021
  • Relationship between bone mineral density (BMD) and type 2 diabetes is still inconsistent. Recently, many epidemiologic data show that fracture risk is increased in type 2 diabetic patients regardless of BMD status. In this study, we used nation-wide data from 2008 to 2011 Korea National Health and Nutrition Examination Survey (KNHANES) to analyze the BMD status in patients with type 2 diabetes compared to non-diabetics. We included subjects aged 50 years or older in men (N=2,959, 2,430 without diabetes, 529 with type 2 diabetes) and postmenopausal women (N=2,902, 2,479 without diabetes, 423 with type 2 diabetes). Subjects with history of medication for osteoporosis or with illness or malignancy affecting bone metabolism were excluded. Data of anthropometric measurements and demographic characteristics were collected by trained examiner. Serum was separated from peripheral venous blood samples obtained after 8 hours of fasting. BMD was measured at lumbar spine and femur using dual-energy X-ray absorptiometry (DXA). There was a significant positive association between lumbar spine BMD and type 2 diabetes after adjusting age, gender, body mass index, monthly house income, education level, physical activity, daily calcium intake and vitamin D concentration by multiple regression analysis in all subjects. In the subgroup analysis by gender, this association was maintained both in male and female after adjusting those confounding factors. However, femur BMD was not different between type 2 diabetic and non-diabetic subjects. In conclusion, lumbar spine BMD was significantly higher in type 2 diabetic patients aged 50 years or more in men and postmenopausal women compared to non-diabetic subjects.

The association between body composition and bone mineral density in subjects aged 50 years or older in men and postmenopausal women in Korea

  • Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.209-220
    • /
    • 2021
  • The effect of body composition such as lean mass and fat mass on bone mineral density (BMD) is complex and still controversial. In this study, we investigated the relationship between body composition and bone mineral density using nation-wide data from 2008 to 2011 Korea National Health and Nutrition Examination Survey (KNHANES) in 2,139 men and 2,193 postmenopausal women aged 50 years or older. Subjects with history of medication for osteoporosis or with diseases or malignancy affecting bone metabolism were excluded. Data of anthropometric measurements and demographic characteristics were collected by trained examiner. Fasting blood sample was obtained for blood chemistry analysis. BMD of the lumbar spine, total femur, and femoral neck, and body composition such as total lean mass (TLM), total fat mass (TFM), truncal fat mass (TrFM) were measured using dual-energy X-ray absorptiometry (DXA). There were significant positive correlations between body composition indices such as lean mass and fat mass with BMD. In multiple regression analysis, TLM was positively associated with BMD after adjusting age, body mass index, monthly house income, education level, physical activity, daily calcium intake and vitamin D concentration in both men and postmenopausal women. BMD at lumbar spine and femur in lowest quartile of TLM was significantly lower than other quartiles after adjusting those confounding factors in both gender. TrFM was negatively associated with total femur BMD in male and femur neck BMD in postmenopausal women after adjusting confounding factors. In conclusion, TLM is very important factor in maintaining BMD in subjects aged 50 years or older in men and postmenopausal women.