Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.12.1455

Salicylate Can Enhance Osteogenic Differentiation of Human Periosteum-derived Mesenchymal Stem Cells  

Kim, Bo Gyu (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
Lee, A ram (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
Lee, Bo Young (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
Shim, Sungbo (Department of Biochemistry, Chungbuk National University)
Moon, Dong kyu (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University)
Hwang, Sun-Chul (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University)
Byun, June-Ho (Department of Oral and Maxillofacial Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University)
Woo, Dong Kyun (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
Publication Information
Journal of Life Science / v.28, no.12, 2018 , pp. 1455-1460 More about this Journal
Abstract
Due to a rapidly expanding aging population, the incidence of degenerative bone disease has increased, and efforts to handle the issue using regenerative medicine have become more important. In order to control various bone diseases such as osteoarthritis and osteoporosis, regenerative medicine utilizing adult stem cells has been extensively studied. And it is now clear that the mitochondrial energy metabolism, oxidative phosphorylation, is important for the process of stem cell differentiation. Interestingly, a recent study reported that salicylate promotes mitochondrial biogenesis by regulating the expression of $PGC-1{\alpha}$ in murine cells. However, the possible effects of salicylate on osteogenic differentiation through increased mitochondrial biogenesis in stem cells remain unknown. Thus, here we investigated whether salicylate could influence osteogenic differentiation and mitochondrial biogenesis of periosteum-derived mesenchymal stem cells (POMSCs). We found that salicylate treatments of POMSCs undergoing osteogenic differentiation increased the activity of alkaline phosphatase, a well-known early marker of bone cell differentiation. In addition, we observed that mitochondrial mass was increased by salicylate treatments in POMSCs. Together, these results indicate that salicylate can enhance osteogenic differentiation and mitochondrial biogenesis in POMSCs. Therefore, the findings in this study suggest that small molecules augmenting mitochondrial function such as salicylate can be a novel modulator for osteogenic differentiation and regenerative medicine.
Keywords
Differentiation; mitochondria; osteogenesis; regenerative medicine; stem cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ringe, J., Leinhase, I., Stich, S., Loch, A., Neumann, K., Haisch, A., Haupl, T., Manz, R., Kaps, C. and Sittinger, M. 2008. Human mastoid periosteum-derived stem cells: promising candidates for skeletal tissue engineering. J. Tissue Eng. Regen. Med. 2, 136-146.   DOI
2 Rhy, Y. M., Hah, Y. S., Park, B. W., Kim, D. R., Roh, G. S., Kim, J. R., Kim, U. K., Rho, G. J., Maeng, G. H. and Byun, J. H. 2011. Osteogenic differentiation of human periostealderived cells in a three-dimensional collagen scaffold. Mol. Biol. Rep. 38, 2887-2894.   DOI
3 Agata, H., Asahina, I., Yamazaki, Y., Uchida, M., Shinohara, Y., Honda, M. J., Kagami, H. and Ueda, M. 2007. Effective bone engineering with periosteum-derived cells. J. Dent. Res. 86, 79-83.   DOI
4 Schafer, R., Spohn, G. and Baer, P. C. 2016. Mesenchymal stem/stromal cells in regenerative medicine: Can preconditioning strategies improve therapeutic efficacy? Transfus. Med. Hemother. 43, 256-267.   DOI
5 Steinberg, G. R., Dandapani, M. and Hardie, D. G. 2013. AMPK: mediating the metabolic effects of salicylate-based drugs? Trends Endocrinol. Metab. 24, 481-487.   DOI
6 Shum, L. C., White, N. S., Mills, B. N., Bentley, K. L. and Eliseev, R. A. 2016. Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cells Dev. 25, 114-122.   DOI
7 Shyam, H., Singh, S. K., Kant, R. and Saxena, S. K. 2017. Mesenchymal stem cells in regenerative medicine: a new paradigm for degenerative bone diseases. Regen. Med. 12, 111-114.   DOI
8 Yan, Y., Yang, X., Zhao, T., Zou, Y., Li, R. and Xu, Y. 2017. Salicylates promote mitochondrial biogenesis by regulating the expression of PGC-1${\alpha}$ in murine 3T3-L1 pre-adipocytes. Biochem. Biophys. Res. Commun. 491, 436-441.   DOI
9 Yoon, D. K., Park, J. S., Rho, G. J., Lee, H. J., Sung, I. Y., Song, J. H., Park, B. W., Kang, Y. H., Byun, S. H., Hwang, S. C., Woo, D. K., Cho, Y. C. and Byun, J. H. 2017. The involvement of histone methylation in osteoblastic differentiation of human periosteum-derived cells cultured in vitro under hypoxic conditions. Cell Biochem. Funct. 35, 441-452.   DOI
10 Baroni, M. D., Colombo, S. and Martegani, E. 2018. Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. Microb. Cell 5, 344-356.   DOI
11 Bergman, O. and Ben-Shachar, D. 2016. Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: Possible interactions with cellular processes. Can. J. Psychiatry 61, 457-469.   DOI
12 Chen, G., Deng, C. and Li, Y. P. 2012. TGF-${\beta}$ and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8, 272-288.   DOI
13 Chung, J. E., Park, J. H., Yun, J. W., Kang, Y. H., Park, B. W., Hwang, S. C., Cho, Y. C., Sung, I. Y., Woo, D. K. and Byun, J. H. 2016. Cultured human periosteum-derived cells can differentiate into osteoblasts in a perioxisome proliferator-activated receptor gamma-mediated fashion via bone morphogenetic protein signaling. Int. J. Med. Sci. 13, 806-818.   DOI
14 Ferretti, C. and Mattioli-Belmonte, M. 2014. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World J. Stem Cells 6, 266-277.   DOI
15 Hah, Y. S., Joo, H. H., Kang, Y. H., Park, B. W., Hwang, S. C., Kim, J. W., Sung, I. Y., Rho, G. J., Woo, D. K. and Byun, J. H. 2014. Cultured human periosteal-derived cells have inducible adipogenic activity and can also differentiate into osteoblasts in a perioxisome proliferator-activated receptor-mediated fashion. Int. J. Med. Sci. 11, 1116-1128.   DOI
16 Hutmacher, D. W. and Sittinger, M. 2003. Periosteal cells in bone tissue engineering. Tissue Eng. 9, 45-64.   DOI
17 Huttemann, M., Lee, I., Samavati, L., Yu, H. and Doan, J. W. 2007. Regulation of mitochondrial oxidative phosphorylation through cell signaling. BBA 1773, 1701-1720.
18 Ito, K. and Suda, T. 2014. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243-256.   DOI
19 Breitbart, A. S., Grande, D. A., Kessler, R., Ryaby, J. T., Fitzsimmons, R. J. and Grant, R. T. 1998. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast. Reconstr. Surg. 101, 567-574.   DOI
20 Kakehata, S. and Santos-Sacchi, J. 1996. Effects of salicylate and lanthanides on outer hair cell motility and associated gating charge. J. Neurosci. 16, 4881-4889.   DOI
21 Mao, A. S. and Mooney, D. J. 2015. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA. 112, 14452-14459.   DOI
22 Oryan, A., Kamali, A., Moshiri, A. and Eslaminejad, B. M. 2017. Role of mesenchymal stem cells in bone regenerative medicine: What is the evidence? Cells Tissues Organs 204, 59-83.   DOI
23 Park, B. W., Hah, Y. S., Kim, D. R., Kim, J. R. and Byun, J. H. Osteogenic phenotypes and mineralization of cultured human periosteal-derived cells. Arch. Oral Biol. 52, 983-989.
24 Park, B. W., Hah, Y. S., Kim, D. R., Kim, J. R. and Byun, J. H. 2008. Vascular endothelial growth factor expression in cultured periosteal-derived cells. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 105, 554-560.   DOI
25 Park, H. C., Son, Y. B., Lee, S. L., Rho, G. J., Kang, Y. H., Park, B. W., Byun, S. H., Hwang, S. C., Cho, I. A., Cho, Y. C., Sung, I. Y., Woo, D. K. and Byun, J. H. 2017. Effects of osteogenic-conditioned medium from human periosteumderived cells on osteoclast differentiation. Int. J. Med. Sci. 14, 1389-1401.   DOI
26 Park, J. H., Park, B. W., Kang, Y. H., Byun, S. H., Hwang, S. C., Kim, D. R., Woo D. K. and Byun, J. H. 2017. Lin28a enhances in vitro osteoblastic differentiation of human periosteum-derived cells. Cell Biochem. Funct. 35, 497-509.   DOI
27 Rammelt, S., Neumann, M., Hanisch, U., Reinstorf, A., Pompe, W., Zwipp, H. and Biewener, A. 2005. Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. J. Biomed. Mater. Res. A. 73, 284-294.