• Title/Summary/Keyword: Energy dispersive X-ray spectroscopy(EDS)

Search Result 301, Processing Time 0.025 seconds

Evaluation of Failure Mechanism of Flexible CIGS Solar Cell Exposed to High Temperature and Humid Atmosphere (플렉서블 CIGS 태양전지의 고온고습 환경 고장 기구 분석)

  • Kim, Hyeok-Soo;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate electrical and structural degradation of flexible CIGS sollar cell exposed to high temperature and humid atmosphere. Method: Accelerated degradation was performed for various time under $85^{\circ}C/85%RH$ and then electrical and structural properties were analyzed by 4-point probe method, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Results: Sheet resistance of the top ITO layer increased with exposure time to the high temperature and humid atmosphere. Blunting of the protrusion morphology of ITO layer was observed for the degraded specimen, while no phase change was detected by XRD. Oxygen was detected at the edge area after 300 hours of exposure. Conclusion: Increase in electrical resistance of the degraded CIGS solar cell under high temperature and humid environment was attribute to the oxygen or water absorption.

Transmission Electron Microscopy Specimen Preparation for Layer-area Graphene by a Direct Transfer Method

  • Cho, Youngji;Yang, Jun-Mo;Lam, Do Van;Lee, Seung-Mo;Kim, Jae-Hyun;Han, Kwan-Young;Chang, Jiho
    • Applied Microscopy
    • /
    • v.44 no.4
    • /
    • pp.133-137
    • /
    • 2014
  • We suggest a facile transmission electron microscopy (TEM) specimen preparation method for the direct (polymer-free) transfer of layer-area graphene from Cu substrates to a TEM grid. The standard (polymer-based) method and direct transfer method were by TEM, high-resolution TEM, and energy dispersive X-ray spectroscopy (EDS). The folds and crystalline particles were formed in a graphene specimen by the standard method, while the graphene specimen by the direct method with a new etchant solution exhibited clean and full coverage of the graphene surface, which reduced several wet chemical steps and accompanying mechanical stresses and avoided formation of the oxide metal.

Application of Accelerated Carbonation Reaction for Low Alkalinity of Recycled Aggregate

  • Lee, Jong-Chan;Lee, Sae-Hyun;Yoon, Sang-Hyuck;Song, Tae-Hyeob
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.515-522
    • /
    • 2011
  • As Construction and Demolition (C&D) debris increases every year, systems have been adopted to compel the use of recycled aggregate made from C&D debris, and the use of recycled aggregate in the construction field has increased. But environmental problems linked to the alkalinity of recycled aggregate have occurred, and a study on approaches to lower the alkalinity of recycled aggregate is needed. It was certified by this study that a large amount of recycled aggregate could be carbonated in the C&D debris midterm-treatment field. As a result, the density and the water absorption of recycled aggregate after carbonation reaction was improved, and pH of recycled aggregate was lowered from over 11 to 9.4. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), and Thermogravimetry/Differential Thermal Analysis (TG/DTA) methods also indicated the carbonation of recycled aggregate.

Influence of natural and accelerated weathering of polycarbonate (폴리카보네이트 소재의 자연폭로와 실내촉진 내후성 영향)

  • Moon, Jung-mi;Jang, Ho-Jin;Kim, Chang-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.383-389
    • /
    • 2022
  • Natural(outdoor) and accelerated(artificial) weathering tests were performed to investigate their influence on polycarbonate. The polycarbonate materials were prepared of various formulations divided into three batches, with existing, development materials1, development materials2, containing mixture of UV additives. Weathering tests were carried out as outdoor weathering(Seosan, South Korea) and accelerated weathering(xenon-arc), and the results analysis were evaluated based on yellow-index(YI), scanning electron microscope(SEM/EDS), energy dispersive x-ray spectroscopy(XRD), and gel permeation chromatography(GPC). Among the three materials, processing method development materials1 with UV stabilizer was excellent in weathering. This study can provide basic data for standardization of development and performance evaluation on livestock barn roof.

Afterglow Effect from Adding BaF2 to Oxyfluoride Glass Ceramic Containing Eu2+-doped Nepheline

  • Lee, Hansol;Chung, Woon Jin
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.413-419
    • /
    • 2022
  • An oxyfluoride glass ceramic containing Eu2+-doped nepheline and LaF3 crystals was modified, with BaF2 replacing LaF3 up to 20 mole percent, and its luminescence change was monitored. With increasing BaF2 content, the greenish yellow emission centered at 540 nm under 400-nm excitation decreased, and a new afterglow emission from the modified ceramic was observed after removal of the excitation light source. X-ray diffraction (XRD) and transmission electron microscopy with energy dispersive spectroscopy (TEM-EDS) were used to investigate the changes in the crystalline phases within the glass matrix. Time dependent emission intensity was monitored to observe the afterglow, and the possible mechanism for the afterglow due to BaF2 addition was considered.

Gas Sensing Properties of Powder Prepared from Waste Thermoelectric Devices by Wet Reduction Process

  • So, Hyeongsub;Im, Dong-Ha;Jung, Hyunsung;Lee, Kun-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.90-93
    • /
    • 2018
  • In this study, n-type $Bi_2Te_3$ in thermoelectric scrap is recovered through a wet reduction process. The recovered powder (tellurium) is grafted onto gas sensor in a new application that is not a thermoelectric device. Bismuth-rich powder is prepared by adding hydrazine when pH of the solution is brought to 13 using NaOH. The pH of the filtered solution was reduced using $HNO_3$, and then hydrazine was added to perform the re-reduction reaction. The tellurium-rich powder can be obtained through this reaction. The elemental analysis for these powders is confirmed by energy dispersive X-ray spectroscopy (EDS) analysis ; the successful separation of bismuth and tellurium is confirmed. Separated tellurium powder is mixed with DMF solvent and ethyl cellulose binder to confirm gas sensing properties. The tellurium paste was exposed in $NO_x$ atmosphere and exhibited a rapid reaction rate and recovery rate of less than 3 minutes for the gas.

Mechanical Properties of TiN and DLC coated Rod for Pedicle Screw System (TiN 및 DLC 코팅된 척추용 나사못 시스템 Rod의 기계적 특성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.183-191
    • /
    • 2017
  • In this study, surface morphology and mechanical property of TiN and DLC coated pedicle screw have been investigated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, vickers hardness test, axial gripping, and axial torsional gripping capacity test. From the EDS and XRD results, the composition and crystal structure of TiN and DLC coated surface were verified. The hardness value was increased by TIN and DLC coating, and the DLC coating surface has the highest value. The gripping capacity also showed higher value for TiN and DLC coated specimen than that of non-coated (Ti alloy) surface. The surface morphology of gripping tested specimen showed rougher scratched surface from Ti alloy than TiN and DLC coated layer.

Structural and Electrical Properties of Cu(In,Ga)Se2 Thin Films Prepared by RF Magnetron Sputtering without Selenization (셀렌화 공정을 제외한 RF 마그네트론 스퍼터링으로 제작된 Cu(In,Ga)Se2 박막의 구조 및 전기적 특성)

  • Choi, Jung-Kyu;Hwang, Dong-Hyun;Son, Young-Guk
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.75-79
    • /
    • 2013
  • A one-step route was developed to fabricate $Cu(In,Ga)Se_2$ (CIGS) thin films by radio frequency (RF) magnetron sputtering from a single quaternary $CuIn_{0.75}Ga_{0.25}Se_2$ target. The effects of the substrate temperatures on the structural and electrical properties of the CIGS layers were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and Hall effect measurements. All the deposited films showed a preferential orientation along the (112) direction. The films deposited at $300^{\circ}C$ and $400^{\circ}C$ revealed that chalcopyrite main (112) peak and weak prominent peaks of (220)/(204) and (312)/(116), indicating polycrystalline structures. The element ratio of the deposited film at $300^{\circ}C$ were almost the same as the near-optimum value. The carrier concentration of the films decreased with increasing substrate temperatures.

Corrosion and Strength Degradation Characteristics of 1.25Cr-0.5Mo Steel under SO2 Gas Environment (SO2 가스 환경 하에서 1.25Cr-0.5Mo 강의 부식 및 강도 저하 특성)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.3
    • /
    • pp.149-156
    • /
    • 2018
  • The corrosion and strength degradation characteristics of 1.25Cr-0.5Mo steels were studied under $650^{\circ}C$ in $76%N_2+6%O_2+16%CO_2+2%SO_2$ gas condition up to 500 hrs. Corroded specimens were characterized by weight gain, scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDS), and X-ray diffraction(XRD). The tensile test was conducted to evaluate the mechanical strength and fracture mode with corrosion at high temperature. As the results of the experiments, thick Fe-rich oxide layers over $200{\mu}m$ were formed on the surface within 500 hrs. The thick oxide layers are formed with reduction of the cross-sectional area of the specimens. Thus, the strength tended to decrease with reduction of the cross-sectional area.

Formation and Control of Calcium Carbonate Films having Aragonite Crystal Structure by Electro-Chemical Process (전기화학적 프로세스에 의한 아라고나이트 결정구조 탄산칼슘 막의 형성 및 제어)

  • Lee, Seung-Hyo;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.325-331
    • /
    • 2018
  • Calcium carbonate($CaCO_3$) films were formed by an eco-friendly electro-chemical technique on steel substrates in synthesized distilled water solutions containing $NaHCO_3$, $CaCl_2$ and $MgCl_2$ with different ratio respectively. It was investigated to confirm the effect of $Mg^{2+}$ concentration by Scanning Electron Microscopy(SEM), Energy Dispersive x-ray Spectroscopy(EDS) and X-Ray Diffraction(XRD) respectively. From an experimental result, only calcite crystals were found in solution containing no $Mg^{2+}$. By increasing concentration of $Mg^{2+}$, deposition rate decreased and crystal structure was transformed form calcite to aragonite. In case of including $MgCl_2$ 300mM in synthesized solutions containing $NaHCO_3$, $CaCl_2$ 60mM, it was showed over the 90% of aragonite contents which have quite high deposition rate of aragonite. Also, it was confirmed that $Mg^{2+}$ acted as inhibitor on the films which made transforming from calcite to aragonite.