DOI QR코드

DOI QR Code

Structural and Electrical Properties of Cu(In,Ga)Se2 Thin Films Prepared by RF Magnetron Sputtering without Selenization

셀렌화 공정을 제외한 RF 마그네트론 스퍼터링으로 제작된 Cu(In,Ga)Se2 박막의 구조 및 전기적 특성

  • Choi, Jung-Kyu (Department of Materials Science and Engineering, Pusan National University) ;
  • Hwang, Dong-Hyun (Department of Materials Science and Engineering, Pusan National University) ;
  • Son, Young-Guk (Department of Materials Science and Engineering, Pusan National University)
  • Received : 2013.03.13
  • Accepted : 2013.04.26
  • Published : 2013.04.30

Abstract

A one-step route was developed to fabricate $Cu(In,Ga)Se_2$ (CIGS) thin films by radio frequency (RF) magnetron sputtering from a single quaternary $CuIn_{0.75}Ga_{0.25}Se_2$ target. The effects of the substrate temperatures on the structural and electrical properties of the CIGS layers were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and Hall effect measurements. All the deposited films showed a preferential orientation along the (112) direction. The films deposited at $300^{\circ}C$ and $400^{\circ}C$ revealed that chalcopyrite main (112) peak and weak prominent peaks of (220)/(204) and (312)/(116), indicating polycrystalline structures. The element ratio of the deposited film at $300^{\circ}C$ were almost the same as the near-optimum value. The carrier concentration of the films decreased with increasing substrate temperatures.

Keywords

References

  1. K. Ramanathan, G. Teeter, J. C. Keane, R. Noufi, Thin Solid Films, 480 (2005) 499.
  2. Abou-Ras, D. L. Bazner, F. J. Haug, M. Kalin, D. Rudmann, A. N. Tiwari, Res. Appl., 12 (2004) 93.
  3. M. B. Ard, K. Granath, L. Stolt, Thin Solid Films, 361-362 (2000) 9. https://doi.org/10.1016/S0040-6090(99)00828-7
  4. M. Marudachalam, H. Hichri, R. Klenk, R. W. Birkmire, W. N. Shafarman, Appl. Phys. Lett., 67 (1995) 26.
  5. R. Ugarte, R. Schrebler, R. Cordova, E. A. Dalchiele, H. Gomez, Thin Solid Films, 340 (1999) 117. https://doi.org/10.1016/S0040-6090(98)01361-3
  6. Z. Q. Li, Q. Q. Liu, J. J. Li, Z. Sun, Y. W. Chen, Z. Yang, S. M. Huang, Solid-State Electronics, 68 (2012) 80. https://doi.org/10.1016/j.sse.2011.10.008
  7. M. Powalla, G. Voorwinden, D. Hariskos, P. Jackson, R. Kniese, Thin Solid Films, 517 (2009) 2111. https://doi.org/10.1016/j.tsf.2008.10.126
  8. Z. Yu, C. Yan, T. Huang, W. Huang, Y. Yan, Y. Zhang, L. Liu, Y. Zhang, Y. Zhao, Appl. Suf. Sci., 258 (2012) 5222. https://doi.org/10.1016/j.apsusc.2012.01.152
  9. J. A. Frantz, R. Y. Bekele, V. Q. Nguyen, J. S. Sanghera, A. Bruce, S. V. Frolov, M. Cyrus, I. D. Aggarwal, Thin Solid Films, 519 (2011) 7763. https://doi.org/10.1016/j.tsf.2011.06.014
  10. M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, N. Muthukumarasamy, Thin Solid Films, 516 (2008) 6848. https://doi.org/10.1016/j.tsf.2007.12.127
  11. C. Lei, A. Rockett, I. M. Robertson, W. N. Shafarman, M. Beck, J. Appl. Phys., 100 (2006) 073518. https://doi.org/10.1063/1.2357422
  12. A. J. Zhou, D. Mei, X. G. Kong, X. H. Xu, L. D. Feng, X. Y. Dai, T. Gao, J. Z. Li, Thin Solid Films, 520 (2012) 6068. https://doi.org/10.1016/j.tsf.2012.05.035
  13. Y. C. Lin, J. H. Ke, W. T. Yen, S. C. Liang, C. H. Wu, C. T. Chiang, Appl. Surf. Sci., 257 (2011) 4278. https://doi.org/10.1016/j.apsusc.2010.12.036
  14. P. Jackson, R. Wurz, U. Rau, J. Mattheis, M. Kurth, T. Schlotzer, G. Bilger, J. H. Werner, Prog. Photovolt. Res. Appl., 15 (2007) 507. https://doi.org/10.1002/pip.757
  15. Y. C. Lin, Z. Q. Lin, C. H. Shen, L. Q. Wang, C. T. Ha, C. Peng, J. Mater. Sci.: Mater. Electrn., 23 (2012) 493. https://doi.org/10.1007/s10854-011-0424-8
  16. L. Djellal, S. Omeiri, A. Bouguelia, M. Trari, J. Alloys Comp., 476 (2009) 584. https://doi.org/10.1016/j.jallcom.2008.09.094