• Title/Summary/Keyword: Energy conservation in buildings

Search Result 105, Processing Time 0.021 seconds

A Development of the Performance Analysis Program Package of the Automatic Temperature Control System for Heating (난방용 자동온도조절기 성능분석용 프로그램 및 패키지 개발)

  • Kim, Yong-Ki;Woo, Nam-Sub;Lee, Tae-Won;Ahn, Byung-Cheon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1209-1214
    • /
    • 2009
  • Various automatic temperature control systems have been used widely in Korea for the conservation of heating energy and the enhancement of thermal comfort in residential buildings. But the heating control performance for automatic temperature control systems extensively vary with the design and operational conditions of the heating system, the climate condition and others. It was introduced in this study a numerical calculation program package to analyze heating control characteristics of the automatic temperature control system. This package is able to analyze the room air temperature, return water temperature, supplied heating flux and flow rate, and so on. One the other hand, the simulation results were verified by comparing with the field test results.

  • PDF

A Study on the Conservation of Library Materials (도서관자료(圖書館資料) 보존(保存)에 관한 연구(硏究))

  • Kweon, Kie-Won
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.6 no.1
    • /
    • pp.179-213
    • /
    • 1984
  • The history of recording and conserving for maintenance the human's memory from ancient times to modern's has brought about a lot of changing process of the recorded information media with developing in culture, and each society has made important recorded materials in his library as essentially the social apparatus. But most of them that were damaged by factors of the natural disaster, humidity, temperature, light, fungi and insects in the library, and were resulted in deterioration and losing the numerous materials. For removing the inevitable phases repeated, there are studying for counterplan of the fundamental environment factors about preservation, restoration and chemical research of materials in advanced countries, but I get a few researches about protecting the cultural properties. Therefore I research the survey of the actual conditions on 72 university libraries centering around them, and then I have researched the collection rate 81 percent, 58 university libraries. (local : 35, in seoul : 23) As the result of this research, I propose the model of the environment factors of conserving the library materials. 1) To apply the equipment of processing the radiant energy to the new construction and buildings. 2) To remove factors that occur fungi and insects by facilities being controlled relative humility, temperature, and to equip the ventilation arrangement in the library. 3) To shelve all acquired and bound materials after proceeding the vacuum fumigator. 4) Those who want to enter into the library stack were surely taken in sterilzing their hands and shoes, and must put on the gown. 5) To use the vacuum dusting thing (machine) for removing the dust without spreading out the floor of the library at any time. 6) To set up the gas automatic fire extinguisher worked by smoke sensor. 7) To assist the research into the preservation, natures and environment of recorded materials, and to supply financial funds for librarian. 8) To hold regularly the workshop be able to educate the methods of preservation materials by the constant system. (Library Association) 9) To add to responsibilities on certification of preservation materials for librarian. 10) To hold the constant committee system in each library. 11) To keep up with the ideal environment (humidity, temperature, light, ventilation, etc.) of preservation materials in the arrangement room, and to put on the gown.

  • PDF

A Study on the Characteristics of Flows around Building Groups Using a CFD Model (CFD 모델을 이용한 건물군 주변의 흐름 특성 연구)

  • Lee, Hankyung;Kim, Jae-Jin;Lee, Young-Gon
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.501-510
    • /
    • 2015
  • In this study, the characteristics of flows around building groups are investigated using a computational fluid dynamics (CFD) model. For this, building groups with different volumetric ratios in a fixed area are considered. As the volumetric ratio of the building group increases, the region affected by the building group is widened. However, the wind-speed reduced area rather decreases with the volumetric ratio near the ground bottom (z ${\lesssim}$ 0.7H, here, H is the height of the building group) and, above 0.7H, it increases. As the volumetric ratio decreases (that is, space between buildings was widened), the size of recirculation region decreases but flow recovery is delayed, resulting in the wider wind-speed reduced area. The increase in the volumetric ratio results in larger drag force on the flow above the roof level, consequently reducing wind speed above the roof level. However, above z ${\gtrsim}$ 1.7H, wind speed increases with the volumetric ratio for satisfying mass conservation, resultantly increasing turbulent kinetic energy there. Inside the building groups, wind speed decreased with the volumetric ratio and averaged wind speed is parameterized in terms of the volumetric ratio and background flow speed. The parameterization method is applied to producing averaged wind speed for 80 urban areas in 7 cities in Korea, showing relatively good performance.

Impact of Solar Energe Facility on the Landscape Experience of Traditional Temple - Focused on the Entrance Way of Tongdosa - (태양열시설이 전통사찰의 경관경험에 미치는 영향 - 통도사 진입경관을 중심으로 -)

  • Yi, Young-Kyoung;Kim, Jeong-Eun;Lee, Seo-Youl
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.3
    • /
    • pp.114-121
    • /
    • 2010
  • Traditional temples in Korea are the important cultural heritage because of artistic traditonal buildings and structures, paintings, sculptures, and big forest areas which are most ecological and beautiful in Korea. Since traditional temples still function as religious places for very long time, the sense of places intrinsic to the temples are very strong and vivid. The sense of place is very closely related to the conservation of the original landscape type. Recently however, there is a strong tendency to use solar energy in traditional temples because of the low energy efficiency of the old traditional architecture which may have negative impact on landscape which again in turn may lead to the destruction of the sense of place. The purpose of this study was to suggest some landscape design guidelines to protect the sense of place of traditional temple by investigating the impact of solar energy facility on the landscape experience of traditional temple. In order to do perform this purpose, Tongdosa was selected as a study site and four kinds of measurement tools(landscape image, temple identity, landscape satisfaction, degree of landscape improvement) were used as questionnaire items. 180 college students participated in the questionnaire survey. The analysis showed that the solar energy facility had very negative impact on landscape experience such as three landscape image factors(scenic beauty, openness, complexity), landscape satisfaction, temple identity, and landscape improvement. Based on the results, three landscape improvement plans were suggested. First, solar energy facility should be built in the forest in order not to be exposed to visitors, if possible. Second, the landscape management of traditional temple should emphasize on sustaining scenic beauty and temple identity along with the provision of openness. Lastly, detailed landscape guideline should be prepared to regulate the scale, ratio, and the form of the artificial buildings and structures to protect the sense of place of traditional temple.

HOW TO DEFINE CLEAN VEHICLES\ulcorner ENVIRONMENTAL IMPACT RATING OF VEHICLES

  • Mierlo, J.-Van;Vereecken, L.;Maggetto, G.;Favrel, V.;Meyer, S.;Hecq, W.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 2003
  • How to compare the environmental damage caused by vehicles with different foe]s and drive trains\ulcorner This paper describes a methodology to assess the environmental impact of vehicles, using different approaches, and evaluating their benefits and limitations. Rating systems are analysed as tools to compare the environmental impact of vehicles, allowing decision makers to dedicate their financial and non-financial policies and support measures in function of the ecological damage. The paper is based on the "Clean Vehicles" research project, commissioned by the Brussels Capital Region via the BIM-IBGE (Brussels Institute for the Conservation of the Environment) (Van Mierlo et at., 2001). The VriJe Universiteit Brussel (ETEC) and the universite Libre do Bruxelles (CEESE) have jointly carried out the workprogramme. The most important results of this project are illustrated in this paper. First an overview of environmental, economical and technical characteristics of the different alternative fuels and drive trains is given. Afterward the basic principles to identify the environmental impact of cars are described. An outline of the considered emissions and their environmental impact leads to the definition of the calculation method, named Ecoscore. A rather simple and pragmatic approach would be stating that all alternative fuelled vehicles (LPG, CNG, EV, HEV, etc.) can be considered as ′clean′. Another basic approach is considering as ′clean′ all vehicles satisfying a stringent omission regulation like EURO IV or EEV. Such approaches however don′t tell anything about the real environmental damage of the vehicles. In the paper we describe "how should the environmental impact of vehicles be defined\ulcorner", including parameters affecting the emissions of vehicles and their influence on human beings and on the environment and "how could it be defined \ulcorner", taking into account the availability of accurate and reliable data. We take into account different damages (acid rain, photochemical air pollution, global warming. noise, etc.) and their impacts on several receptors like human beings (e.g., cancer, respiratory diseases, etc), ecosystems, or buildings. The presented methodology is based on a kind of Life Cycle Assessment (LCA) in which the contribution of all emissions to a certain damage are considered (e.g. using Exposure-Response damage function). The emissions will include oil extraction, transportation refinery, electricity production, distribution, (Well-to-Wheel approach), as well as the emission due to the production, use and dismantling of the vehicle (Cradle-to-Grave approach). The different damages will be normalized to be able to make a comparison. Hence a reference value (determined by the reference vehicle chosen) will be defined as a target value (the normalized value will thus measure a kind of Distance to Target). The contribution of the different normalized damages to a single value "Ecoscore" will be based on a panel weighting method. Some examples of the calculation of the Ecoscore for different alternative fuels and drive trains will be calculated as an illustration of the methodology.