• Title/Summary/Keyword: Energy band structure

Search Result 531, Processing Time 0.026 seconds

Growth and photocurrent study on the splitting of the valence band for $CuInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)범에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong Myungseak;Hong Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.244-252
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $_CuInSe2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}/\textrm{cm}^3$, 296 $\textrm{cm}^2$/Vㆍs at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 1.1851 eV -($8.99\times10^{-4} eV/K)T^2$(T + 153 K). The crystal field and the spin-orbit splitting energies for the valence band of the CuInSe$_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the $\Gamma$6 states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-, B_1$-와 $C_1$-exciton peaks for n = 1.

Photocurrent study on the splitting of the valence band and growth of $Cdln_2Te_4$ single crystal by Bridgman method (Bridgman법에 의한 $Cdln_2Te_4$단결정의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • 홍광준;이관교;이봉주;박진성;신동찬
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.132-138
    • /
    • 2003
  • A stoichiometric mixture for $CdIn_2Te_4$ single crystal was prepared from horizontal electric furnace. The $CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The $CdIn_2Te_4$ single crystal was evaluated to be tetragonal by the power method. The (001) growth plane of oriented $CdIn_2Te_4$ single crystal was confirmed from back-reflection Laue patterns. The carrier density and mobility of $CdIn_2Te_4$ single crystal measured with Hall effect by van der Pauw method are $8.61\times 1016 \textrm {cm}^{-3}$ and 242 $\textrm{cm}^2$/V.s at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2Te_4$ single crystal obtained from the absorption spectra was well described by the Varshni's relation, $1.4750ev - (7.69\times10^{-3})\; ev/k)\;T^2$/(T + 2147k).The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2Te_4$ single crystal have been estimated to be 0.2704 eV and 0.1465 eV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\Delta$so definitely exists in the $\Gamma_7$ states of the valence band of the $CdIn_2Te_4$ single crystal. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-} B_{1-}$ and Cl-exciton peaks for n = 1.

Photocurrent Study on the Splitting of the Valence Band and Growth of $AgInS_2$GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $AgInS_2$단결성 박막의 성장과 가전자대 갈라짐에대한 광전류 연구)

  • 홍광준
    • Korean Journal of Crystallography
    • /
    • v.12 no.4
    • /
    • pp.197-206
    • /
    • 2001
  • A stoichiometric mixture of evaporating materials for AgInS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films. AgInS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy(HWE)system. The source and substrate temperatures were 680℃ and 410℃, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of AgInS₂ single crystal thin film mea-sured from Hall effect by van der Pauw method are 9.35×10/sup 16/㎤ and 294㎠/V·s at 293K respectively. The temperature dependence of the energy band gap of the AgInS₂ obtained from the absorption spectra was well described by the Varshni's relation , E/sub g/(T)=2.1365eV-(9.89×10/sup-3/eV/K/)T²(T+2930K). The crystal field and the spin-orbit splitting energies for the valence band of the AgInS₂ have been estimated to be 0.1541eV and 0.0129 eV, respectively, by means of the photocur-rent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the Γ/sub 5/ states of the valence band of the AgInS₂ /GaAs epilayer. The three photo-current peaks ovserved at 10K are ascribed to the A₁-, B-₁and C₁-exction peaks for n=1.

  • PDF

A study on the growth and characteristics of $AgGaS_2$ single crystal thin film by hot wall epitaxy (HWE 방법에 의한 $AgGaS_2$단결정 박막성장과 특성에 관한 연구)

  • 홍광준;정준우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.211-220
    • /
    • 1998
  • The stochiometric composition of $AgGaS_2$polycrystal source materials for the single crystal thin films were prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns, it was found that the polycrystal $AgGaS_2$has tetragonal structure of which lattice constant $a_0\;and \;c_0$ were 5.756 $\AA$ and 10.305 $\AA$, respectively. $AgGaS_2$single crystal thin film was deposited on throughly etched GaAs(100) substrate from mixed crystal $AgGaS_2$by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $590^{\circ}C$ and $440^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5 $mu \textrm{m}$/h. The crystallinity of the grown single crystal thin films was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for $AgGaS_2$single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by${\Alpha};=;8.695{\times}10^{-4};eV/K,and;{\beta};=;332;K$. from the photocurrent spectra by illumination of polarized light of the $AgGaS_2$single crystal thin film, we have found that crystal field splitting $\Delta$Cr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pairs are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

Electronic Structure and Magnetism of Fe Monolayer on Ir(001) (Ir(001) 위의 철 단층의 자성에 대한 전자구조 연구)

  • Kim, Dong-Chul;Lee, Jae-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.171-175
    • /
    • 2009
  • The magnetism of the Fe monolayer on Ir(001) substrate [Fe/Ir(001)] was investigated by the first-principles energy band method. For comparison, the Fe and Ir ordered-alloyed monolayer on Ir(001) [Fe$_{0.5}$Ir$_{0.5}$/Ir(001)] was also considered. The calculated magnetic moments for Fe atoms in Fe/Ir(001) system and Fe$_{0.5}$Ir$_{0.5}$/Ir(001) system are 2.95 and 2.83 bohr magnetons, respectively. The detailed aspects of the magnetism and electronic structures for these systems are discussed with the calculated denisty of states and spin densities. The optimized atomic sites for the overlayer Fe and Ir atoms were determined by the total energy and atomic force calculations. The Fe atoms in Fe/Ir(001) move closer to the substrate Ir layer than the Fe atoms in Fe$_{0.5}$Ir$_{0.5}$/Ir(001) do to the Ir substrate.

The Structural and Optical Characteristics of Mg0.3Zn0.7O Thin Films Deposited on PES Substrate According to Oxygen Pressure (PES 기판 위에 증착된 Mg0.3Zn0.7O 박막의 산소압에 따른 구조 및 광학적 특성)

  • Lee, Hyun-Min;Kim, Sang-Hyun;Jang, Nakwon;Kim, Hong-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.760-765
    • /
    • 2014
  • MgZnO has attracted a lot of attention for flexible device. In the flexible substrate, the crystal structure of the thin films as well as the surface morphology is not good. Therefore, in this study, we studied on the effects of the oxygen pressure on the structure and crystallinity of $Mg_{0.3}Zn_{0.7}O$ thin films deposited on PES substrate by using pulsed laser deposition. We used X-ray diffraction and atomic force microscopy in order to observe the structural characteristics of $Mg_{0.3}Zn_{0.7}O$ thin films. The crystallinity of $Mg_{0.3}Zn_{0.7}O$ thin films with increasing temperature was improved, Grain size and RMS of the films were increased. UV-visible spectrophotometer was used to get the band gap energy and transmittance. $Mg_{0.3}Zn_{0.7}O$ thin films showed high transmittance over 90% in the visible region. As increased working pressure from 30 mTorr to 200 mTorr, the bandgap energy of $Mg_{0.3}Zn_{0.7}O$ thin film were decreased from 3.59 eV to 3.50 eV.

Solar Energy Conversion by the Regular Array of TiO2 Nanotubes Anchored with ZnS/CdSSe/CdS Quantum Dots Formed by Sequential Ionic Bath Deposition

  • Park, Soojeong;Seo, Yeonju;Kim, Myung Soo;Lee, Seonghoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.856-862
    • /
    • 2013
  • The photoanode electrode of $TiO_2$ nanotubes (NTs) anchored with ZnS/CdSSe/CdS quantum dots (QDs) was prepared by anodization of Ti metal and successive ionic layer adsorption and reaction (SILAR) procedure. The tuning of the band gap of CdSSe was done with controlled composition of Cd, S, or Se during the SILAR. A ladder-like energy structure suitable for carrier transfer was attained with the photoanode electrode. The power conversion efficiency (PCE) of our solar cell fabricated with the regular array of $TiO_2$ NTs anchored with CdSSe/CdS or CdSe/CdS QDs [i.e., (CdSSe/CdS/$TiO_2NTs$) or (CdSe/CdS/$TiO_2NTs$)] was PCE = 3.49% and 2.81% under the illumination at 100 mW/$cm^2$, respectively. To protect the photocorrosion of our solar cell from the electrolyte and to suppress carrier recombination, ZnS was introduced onto CdSSe/CdS. The PCE of our solar cell with the structure of a photoanode electrode, (ZnS/CdSSe/CdS/$TiO_2$ NTs/Ti) was 4.67% under illumination at 100 mW/$cm^2$.

Growth and Characterization of CuGaTe$_2$ Sing1e Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE) 방법에 의한 CuGaTe$_2$ 단결정 박막 성장과 특성)

  • 유상하;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.273-280
    • /
    • 2002
  • The stochiometric mix of evaporating materials for the CuGaTe$_2$ single crystal thin films was prepared from horizontal furnance. For extrapolation method of X-ray diffraction patterns for the CuGaTe$_2$ polycrystal, it was found tetragonal structure whose lattice constant a$\_$0/ and c$\_$0/ were 6.025 ${\AA}$ and 11.931 ${\AA}$, respectively. To obtain the single crystal thin films, CuGaTe$_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 670 $^{\circ}C$ and 410 $^{\circ}C$ respective1y, and the thickness of the single crystal thin films is 2.1 $\mu\textrm{m}$. The crystalline structure of single crystalthin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. The carrier density and mobility of CuGaTe$_2$ single crystal thin films deduced from Hall data are 8.72${\times}$10$\^$23/㎥, 3.42${\times}$10$\^$-2/㎡/V$.$s at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the CuGaTe$_2$ single crystal thin film, we have found that the values of spin orbit coupling Δs.o and the crystal field splitting Δcr were 0.0791 eV and 0/2463eV at 10K, respectively. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0470eV and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be 0.0490eV, 0.00558eV, respectively.

  • PDF

AgI/AgCl/H2WO4 Double Heterojunctions Composites: Preparation and Visible-Light Photocatalytic Performance

  • Liu, Chunping;Lin, Haili;Gao, Shanmin;Yin, Ping;Guo, Lei;Huang, Baibiao;Dai, Ying
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.441-447
    • /
    • 2014
  • $AgI/AgCl/H_2WO_4$ double heterojunctions photocatalyst was prepared via deposition-precipitation followed by ion exchange method. The structure, crystallinity, morphology, chemical content and other physical-chemical properties of the samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL). The photocatalytic activity of the $AgI/AgCl/H_2WO_4$ was evaluated by degrading methyl orange (MO) under visible light irradiation (${\lambda}$ > 400 nm). The double heterojunctions photocatalyst displayed more efficient photocatalytic activity than pure AgI, AgCl, $H_2WO_4$ and AgCl/$H_2WO_4$. Based on the reactive species and energy band structure, the enhanced photocatalytic activity mechanism of $AgI/AgCl/H_2WO_4$ was discussed in detail. The improved photocatalytic performance of $AgI/AgCl/H_2WO_4$ double heterojunctions could be ascribed to the enhanced interfacial charge transfer and the inhibited recombination of electron-hole pairs, which was in close relation with the $AgI/AgCl/H_2WO_4$ heterojunctions formed between AgI, AgCl and $H_2WO_4$.

Optical Properties for $CuGaTe_2/GaAs$ Epilayers Grown by Hot Wall Epilaxy (Hot Wall Epitaxy (HWE) 방법으로 성장된 $CuGaTe_2/GaAs$ 에피레이어의 광학적 특성)

  • Hong, Kwang-Joon;Park, Chang-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.167-170
    • /
    • 2004
  • The stochiometric mix of evaporating materials for the $CuGaT_2$ single crystal thin films was prepared from horizontal furnance. Using extrapolation method of X-ray diffraction patterns for the $CuGaTe_2$ polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were 6.025 ${\AA}$ and 11.931 ${\AA}$, respectively. To obtain the single crystal thin films, $CuGaTe_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $670^{\circ}C$ and $410^{\circ}C$ respectively, and the thickness of the single crystal thin films is $2.1{\mu}m$. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the $CuGaTe_2$ single crystal thin film, we have found that the values of spin orbit coupling ${\Delta}s.o$ and the crystal field splitting ${\Delta}cr$ were $0.079\underline{1}eV$ and $0.246\underline{3}eV$ at 10 K, respectively. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be $0.047\underline{0}eV$ and the dissipation energy of the donor-bound exciton and acceptor-bound exciton to be $0.049\underline{0}eV$, $0.055\underline{8}eV$, respectively.

  • PDF