Photocurrent study on the splitting of the valence band and growth of $Cdln_2Te_4$ single crystal by Bridgman method

Bridgman법에 의한 $Cdln_2Te_4$단결정의 성장과 가전자대 갈라짐에 대한 광전류 연구

  • Published : 2003.06.01

Abstract

A stoichiometric mixture for $CdIn_2Te_4$ single crystal was prepared from horizontal electric furnace. The $CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The $CdIn_2Te_4$ single crystal was evaluated to be tetragonal by the power method. The (001) growth plane of oriented $CdIn_2Te_4$ single crystal was confirmed from back-reflection Laue patterns. The carrier density and mobility of $CdIn_2Te_4$ single crystal measured with Hall effect by van der Pauw method are $8.61\times 1016 \textrm {cm}^{-3}$ and 242 $\textrm{cm}^2$/V.s at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2Te_4$ single crystal obtained from the absorption spectra was well described by the Varshni's relation, $1.4750ev - (7.69\times10^{-3})\; ev/k)\;T^2$/(T + 2147k).The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2Te_4$ single crystal have been estimated to be 0.2704 eV and 0.1465 eV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\Delta$so definitely exists in the $\Gamma_7$ states of the valence band of the $CdIn_2Te_4$ single crystal. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-} B_{1-}$ and Cl-exciton peaks for n = 1.

수평 전기로에서 $CdIn_2Te_4$ 다결정을 용응법으로 합성하고 Bridgman법으로 tetragonal structure의 $CdIn_2Te_4$ 단견정을 성장시켰다. c축에 수직한 시료의 광흡수와 광전류 spectra를 293k에서 10K까지 측정하였다. Hall효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293 K에서 각각 $8.61\times 10^{16}\textrm{cm}^3,\;242\textrm{cm}^$V .s였다. $CdIn_2Te_4$ 단결정의 광흡수와 광전류 spectra를 293k에서 10K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap $E_g$(T)는 Varshni 공식에 따라 계산한 결과 $1.4750ev - (7.69\times10^{-3})\; ev/k)\;T^2$/(T + 2147k)이었다. 광전류 스펙트럼으로부터 Hamilton matrix(Hopfield quasicubic mode)법으로 계산한 결과 crystal field splitting Δcr값이 0.2704 eV이며 spin-orbit $\Delta$so값은 0.1465 eV임을 확인하였다. 10K일 때 광전류 봉우리들은 n : 1일때 $A_\;{1-} B_\;{1-}$$C_\;{1-}$-exciton봉우리임을 알았다

Keywords

References

  1. Cryst. Growth Charact. v.10 Current transport in p-type CdIn₂Te₄schottkt diodes S.A.Lopez-Rivera;L.Martinez;J.M.Briceno-Valero;R.Echeverria and G.Gonzalez de Armengol.Prog
  2. J.Appl.Phys. v.57 The electronic characteristics of n-type CdIn₂Te₄ S.S.Ou;S.A.Eshraghi;O.M.Stafsudd;A.L.Gentile
  3. Solid State Commun. v.78 The dielectric constant measurement of CdIn₂Te₄ V.Riede;H.Neumann;V.Kramer;M.Kittel https://doi.org/10.1016/0038-1098(91)90285-4
  4. Cryst.Res.Technol. v.26 Infrared and raman spectra of CdIn₂Te₄ V.Riede;H.Neumann;V.Kramer;M.Kittel;H.Sobotta https://doi.org/10.1002/crat.2170260517
  5. Sov. Phys. Semicind. v.6 Prepariation and photoelectrochemistry of CdIn₂Te₄ G.B.Abdullaev;V.G.Agaev;A.B.Antonov;R.Kh.Nani;E.Yu.Salaev
  6. Ternary diamondlike semiconductor L.I.Berger;V.D.Prodhukham
  7. J.Phys.C : Solid State Phys. v.9 The electrical properties of polycrystalline CdIn₂Te₄thin films A Miller;D.J.Lockwood;A.MAckinnon;D.Weaire https://doi.org/10.1088/0022-3719/9/16/009
  8. Phys. Status. Solidi(b) v.44 no.1 Covalent bonding effect on van vleck paramagnetism in CdIn₂Te₄semiconductor compounds P.Manca;C.Muntoni;F.Raga;A.Spiga https://doi.org/10.1002/pssb.2220440105
  9. J.Solid State Chem v.10 Infrared absorption spectra of CdIn₂Te₄ K.W.Browall;J.S.Kasper;H.Wiedemeier https://doi.org/10.1016/0022-4596(74)90004-8
  10. Thin Solid Films v.193;194 High-frequency dielectric constant of CdIn₂Te₄ordered vacancy compounds F.S.Sinencio;J.G.Mendoza-alvarez;D.Zelaya
  11. Bull. Am. Phys. Soc. v.5 Structural distortions and polymorphic behaviour in CdIn₂Te₄tetrahedral copounds D.F.Edwards;D.F.O'kane
  12. J.Appl.Phys. v.62 Crystallographic properties of some ternart and multinary Te-based semiconductors S.Kianian;S.A.Eshraghi;O.M. Stafsudd;A.L.Gentile https://doi.org/10.1063/1.339631
  13. Elements of X-ray diffrations B.D.Cullity
  14. Z. Anorg. Allgem. Chem. v.279 The electrical properties of polycrystalline CdIn₂Te₄thin films H.Hahn;G.Frank;W.Klinger;A.D.Storger;G.Storger https://doi.org/10.1002/zaac.19552790502
  15. Crystal Orientation manual Elizabeth A.Wood
  16. Solid state physics(2nd ed.) J.S.Blakemore
  17. Phys. Rev. v.B.44 Photoconductivity of CdIn₂Te₄ Y.J.Shin;S.K.Kim;B.H.Park;T.S.Jeong;H.K.Shin;T.S.Kim;P.Y.Yu
  18. Physica v.34 New set of tetrahedral covalent radii Y.P.Varshni https://doi.org/10.1016/0031-8914(67)90062-6
  19. Ternary chalcopyrite semiconductor : growth, electronic properties and applications J.L.Shay;J.H.Wernick
  20. Phys.Rev.Lett v.2 Lattice dynamics, mode gruneisen parameters, and coefficient of thermal expansion of CdIn₂Te₄ J.L.Birman https://doi.org/10.1103/PhysRevLett.2.159
  21. J.Phys.Chem.Solids v.10 Structural and optical properties of CdIn₂Te₄grown by temperature gradient vapor transport ceposition M.L.Glasser https://doi.org/10.1016/0022-3697(59)90080-0
  22. Topics in Current Physics v.14 K.Cho.Excitons
  23. Physics and Chemistry of Ⅱ­Ⅵ compounds B.Segall;D.T.F.Marple;M. Aven(Ed.) J.S.Prenerin(Ed.)