Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.3.856

Solar Energy Conversion by the Regular Array of TiO2 Nanotubes Anchored with ZnS/CdSSe/CdS Quantum Dots Formed by Sequential Ionic Bath Deposition  

Park, Soojeong (School of Convergence Science and Technology, Seoul National University)
Seo, Yeonju (School of Chemistry, NS 60, Seoul National University)
Kim, Myung Soo (School of Chemistry, NS 60, Seoul National University)
Lee, Seonghoon (School of Convergence Science and Technology, Seoul National University)
Publication Information
Abstract
The photoanode electrode of $TiO_2$ nanotubes (NTs) anchored with ZnS/CdSSe/CdS quantum dots (QDs) was prepared by anodization of Ti metal and successive ionic layer adsorption and reaction (SILAR) procedure. The tuning of the band gap of CdSSe was done with controlled composition of Cd, S, or Se during the SILAR. A ladder-like energy structure suitable for carrier transfer was attained with the photoanode electrode. The power conversion efficiency (PCE) of our solar cell fabricated with the regular array of $TiO_2$ NTs anchored with CdSSe/CdS or CdSe/CdS QDs [i.e., (CdSSe/CdS/$TiO_2NTs$) or (CdSe/CdS/$TiO_2NTs$)] was PCE = 3.49% and 2.81% under the illumination at 100 mW/$cm^2$, respectively. To protect the photocorrosion of our solar cell from the electrolyte and to suppress carrier recombination, ZnS was introduced onto CdSSe/CdS. The PCE of our solar cell with the structure of a photoanode electrode, (ZnS/CdSSe/CdS/$TiO_2$ NTs/Ti) was 4.67% under illumination at 100 mW/$cm^2$.
Keywords
$TiO_2$ nanotubes; Quantum dots; SILAR; Solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Seabold, J. A.; Choi, K.-S. Chem. Mater. 2008, 20, 5266.   DOI   ScienceOn
2 Lee, H.; Nazeeruddin, M. K. Adv. Funct. Mater. 2009, 19, 2735.   DOI   ScienceOn
3 Vogel, R.; Weller, H. J. Phys. Chem. 1994, 98, 3183.   DOI   ScienceOn
4 Yu-Jen, S.; Yuh-Lang, L. Nanotech. 2008, 19, 045602.   DOI   ScienceOn
5 Pan, A.; Wang, Z. J. Am. Chem. Soc. 2005, 127, 15692.   DOI   ScienceOn
6 Pan, A. L.; Gosele, U. Nano Lett. 2008, 8, 3413.   DOI   ScienceOn
7 Johnston, J. W. D. J. Appl. Phys. 1971, 42, 2731.   DOI
8 Hurwitz, C. E. Appl. Phys. Lett. 1966, 8, 243.   DOI
9 Zaban, A.; Nozik, A. J. Langmuir 1998, 14, 3153.   DOI   ScienceOn
10 Leschkies, K. S.; Aydil, E. S. Nano Lett. 2007, 7, 1793.   DOI   ScienceOn
11 Robel, I.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385.   DOI   ScienceOn
12 Chang, C.-H.; Lee, Y.-L. Appl. Phys. Lett. 2007, 91, 053503.   DOI   ScienceOn
13 Nicolau, Y. F. Appl. Surf. Sci. 1985, 22,1061.
14 Lee, H.; Nazeeruddin, M. K. Nano Lett. 2009, 9, 4221.   DOI   ScienceOn
15 Lee, H. J.; Park, S.-M. Chem. Mater. 2010, 22, 5636.   DOI   ScienceOn
16 Guijarro, N. S.; Goìmez, R. J. Phys. Chem. C 2009, 113, 4208.
17 Sven, R.; Arie, Z. Chem. Phys. Chem. 2010, 11, 2290.   DOI   ScienceOn
18 Diguna, L. J.; Toyoda, T. Appl. Phys. Lett. 2007, 91, 023116.   DOI   ScienceOn
19 Yang, S.-M.; Jiang, L. J. Mater. Chem. 2002, 12, 1459.   DOI   ScienceOn
20 Spanhel, L.; Henglein, A. J. Am. Chem. Soc. 1987, 109, 5649.   DOI
21 Rho, C.; Suh, J. S. J. Phys. Chem. C 2012, 116, 7213.   DOI   ScienceOn
22 Hong, L.; Wenzhong, S. Nanotech. 2011, 22, 155603.   DOI   ScienceOn
23 Ito, S.; Gratzel, M. Thin Solid Films 2008, 516, 4613.   DOI   ScienceOn
24 Liu, B.; Aydil, E. S. J. Am. Chem. Soc. 2009, 131, 3985.   DOI   ScienceOn
25 Jennings, J. R.; Walker, A. B. J. Am. Chem. Soc. 2008, 130, 13364.   DOI   ScienceOn
26 Banerjee, S.; Misra, M. Chem. Mater. 2008, 20, 6784.   DOI   ScienceOn
27 Liang, Y.; Xu, D. J. Phys. Chem. B 2005, 109, 7120.   DOI   ScienceOn
28 Zhu, K.; Frank, A. J. Nano Lett. 2007, 7, 3739.   DOI   ScienceOn
29 Mor, G. K.; Grimes, C. A. Nano Lett. 2005, 6, 215.
30 Vegard, L. Zeitschrift fur Physik A Hadrons and Nuclei 1921, 5, 17.   DOI
31 Swafford, L. A.; Rosenthal, S. J. J. Am. Chem. Soc. 2006, 128, 12299.   DOI   ScienceOn
32 Myung, Y.; Park, J. ACS Nano 2010, 4, 3789.   DOI   ScienceOn
33 Luo, J.; Fan, H. J. J. Phys. Chem. C 2012, 116, 11956.   DOI   ScienceOn
34 Sung, T. K.; Lee, C.-L. J. Mater. Chem. 2011, 21, 4553.   DOI   ScienceOn
35 Karthik, S.; Craig, A. G. Nanotech. 2007, 18, 065707.   DOI   ScienceOn
36 Shin, Y.; Lee, S. Nano Let. 2008, 8, 3171.   DOI   ScienceOn
37 Cheng, S.; Yang, L. J. Phys. Chem. C 2011, 116, 2615.
38 Yang, K.; Whangbo, M.-H. J. Phys. Chem. C 2009, 113, 2624.   DOI   ScienceOn
39 Ghicov, A.; Schmuki, P. Nano Lett. 2006, 6, 1080.   DOI   ScienceOn
40 Long, R.; Dai, Y. J. Phys. Chem. C 2009, 113, 17464.   DOI
41 Choi, W.; Termin, A.; Hoffmann, M. R. J. Phys. Chem. 1994, 98, 13669.   DOI   ScienceOn
42 Anpo, M.; Takeuchi, M. J. Catal. 2003, 216, 505.   DOI   ScienceOn
43 Sun, W.-T.; Peng, L.-M. J. Am. Chem. Soc. 2008, 130, 1124.   DOI   ScienceOn
44 Lee, Y.-L.; Chien, H.-T. Chem. Mater. 2008, 20, 6903.   DOI   ScienceOn