Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.11.760

The Structural and Optical Characteristics of Mg0.3Zn0.7O Thin Films Deposited on PES Substrate According to Oxygen Pressure  

Lee, Hyun-Min (Division of Electrical and Electronics Engineering, Korea Maritime University)
Kim, Sang-Hyun (Division of Electrical and Electronics Engineering, Korea Maritime University)
Jang, Nakwon (Division of Electrical and Electronics Engineering, Korea Maritime University)
Kim, Hong-Seung (Department of Nano Semiconductor Engineering, Korea Maritime University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.11, 2014 , pp. 760-765 More about this Journal
Abstract
MgZnO has attracted a lot of attention for flexible device. In the flexible substrate, the crystal structure of the thin films as well as the surface morphology is not good. Therefore, in this study, we studied on the effects of the oxygen pressure on the structure and crystallinity of $Mg_{0.3}Zn_{0.7}O$ thin films deposited on PES substrate by using pulsed laser deposition. We used X-ray diffraction and atomic force microscopy in order to observe the structural characteristics of $Mg_{0.3}Zn_{0.7}O$ thin films. The crystallinity of $Mg_{0.3}Zn_{0.7}O$ thin films with increasing temperature was improved, Grain size and RMS of the films were increased. UV-visible spectrophotometer was used to get the band gap energy and transmittance. $Mg_{0.3}Zn_{0.7}O$ thin films showed high transmittance over 90% in the visible region. As increased working pressure from 30 mTorr to 200 mTorr, the bandgap energy of $Mg_{0.3}Zn_{0.7}O$ thin film were decreased from 3.59 eV to 3.50 eV.
Keywords
Oxide semiconductor; Flexible device; Bandgap; Thin film; Transmittance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, Appl. Phys. Lett., 74, 1177 (1999).   DOI   ScienceOn
2 J. Park, J. Hwang, D. Seo, S. Park, D. Moon, and J. Han, J. KIEEME, 16, 1115 (2003).
3 D. C. Look, Mater. Sci. Eng. B, 80, 383 (2001).   DOI   ScienceOn
4 H. S. Kang, J. W. Kim, and S. Y. Lee, J. Appl. Phys., 95, 1246 (2004).   DOI   ScienceOn
5 Y. Chen, H. J. Ko, S. K. Hong, and T. Yao, Appl. Phys Lett., 76, 559 (2000).   DOI   ScienceOn
6 A. Ohotomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett., 72, 2466 (1998).   DOI   ScienceOn
7 Z. Vashaei, T. Minegishi, and T. Yao, J. Cryst. Growth, 306, 269 (2007).   DOI   ScienceOn
8 S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schafer, Y. G. Sadofyev, and F. Henneberger, Appl. Phys. Lett., 87, 091903 (2005).   DOI   ScienceOn
9 X. Chen and J. Kang, Semicond. Sci. Technol., 23, 025008 (2008).   DOI
10 L. C. Ji, L. Huang, Y. Liu, Y. Q. Xie, F. Liu, A. Y. Liu, and W. Z. Shi, Thin Solid Films, 519, 3789 (2011).   DOI   ScienceOn
11 W. W. Wensa, A. Yamada, K. Takahashi, M. Yoshino, and M. Konagai, J. Appl. Phys., 70, 7119 (1991).   DOI
12 S. W. Kang, Y. Y. Kim, C. H. Ahn, S. K. Mohanta, and H. K. Cho, J. Mater. Sci: Mater. Electron., 19, 755 (2008).   DOI