• 제목/요약/키워드: Energy Reduction Design

검색결과 798건 처리시간 0.026초

에너지 저감형 그린홈 프로토타이핑을 위한 설계요소 분석 연구 (Analytic Study on the Design Elements for Energy Conservative Green-Home Prototyping)

  • 김정은;장성주;하미경;성혜연;김경완
    • KIEAE Journal
    • /
    • 제11권4호
    • /
    • pp.63-70
    • /
    • 2011
  • In respond to the global energy crisis and climate change, there have been many ongoing national efforts to develop a sustainable housing prototype followed by "2 million Green Home Project" in Korea. More than 50% of nation's population are currently living in apartment housing thus the country is seriously in need of developing green apartment prototype. In this research, we focused on energy-conservative green apartment design prototype that have both passive components and active systems explored in a systemic design approach. After selecting an existing basic apartment unit, we analyzed and compared statistical data with the simulated annual energy consumption to match these two data sets for validating simulation accuracy performed with TRNSYS package. We performed energy simulations with different passive design factors such as varied insulation thickness, window types and infiltration rates as well as the active design factors including boilers and lighting fixtures to analyze their impacts on the energy performance of the housing unit using TRNSYS software. As a result, we acquired significant energy reduction effect with explored design strategies but the life cycle cost analysis for the final design guidline would need to be performed. In this study, we focused on a systematic comparative energy analysis based on TRNSYS that can improve the design of a green apartment housing.

자동차 범퍼 레일의 경량화 설계에 관한 연구 (Study on the design of the passenger cars bumper rail to reduce the weight)

  • 김이규;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.563-566
    • /
    • 2000
  • Recently vehicle development trend puts emphasis on cost reduction and performance improvement through weight reduction, and safety security to protect passenger and chassis against external impact. Primary factors effected on vehicle safety are chassis structure, chassis system, and safety equipment like bumper. Research in part of weight reduction is proceeding actively about prohibition of over-design and material through optimal design method. Bumper in these factors is demanded two of all factors, safety security and weight reduction. It is the part that prohibits or reduces a physical impact in low speed crash. Bumper is composed of a few parts but this study exhibits the shape of bumper rail has a role on energy absorption of safety security and weight reduction from structure analysis of bumper rail's variable shape surface.

  • PDF

에너지 부하 감소를 위한 인텔리전트 외피 디자인의 분류 및 표현특성에 관한 연구 (A Study on Classifications and Expression Characteristics of Intelligent Skin Design for Reduction of Energy Load)

  • 서원덕
    • 한국주거학회논문집
    • /
    • 제19권5호
    • /
    • pp.67-75
    • /
    • 2008
  • The Progress and development of technology occurring since the 20th century has improved the quality of life of most people. However, serious energy problems have arisen as a result of this lifestyle of convenience and prosperity. These problems have already stared to threaten the very survival of human beings. Architecture and energy are no longer separate concepts. They are now considered as coexisting subject areas. The mutual relevance of energy, technology and architecture is expected to be more emphasized in the future. This study is concerned with the skin design of intelligent housing, which defines the external and infernal boundary. Applicable design techniques are suggested. The purpose of his study is to classify intelligent skin technologies and applications, and to grasp the design characteristics, advantages and disadvantages, as well as design techniques of each items related to Housing. This study will also suggest application techniques that can be used as basic data for determining an appropriate skin type when designing single buildings.

The development of a fuel lifecycle reactivity control strategy for a generic micro high temperature reactor

  • Seddon Atkinson;Takeshi Aoki
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.785-792
    • /
    • 2024
  • This article provides an overview of the design methodology used to develop a conceptual set of reactivity control mechanism of a micro reactor based on the U-Battery. The U-Battery is based on remote deployment and therefore it is favourable to provide a long fuel lifecycle. This is achieved by implementing a high fissile loading content, which proves challenging when considering reactivity control methods. This article follows the design methodology used to overcome these issues, with an emphasis on a new concept of a moveable moderator which utilises the size of the U-Battery as a small reduction in moderation provides a significant reduction in reactivity. The latest work on this project sees the moveable moderator investigated during a depressurised loss of forced coolant accident, where a reduction of moderator volume increases the maximum fuel temperature experienced. The overall conclusion is that the maximum fuel temperature is not significantly increased (4 K) due to the central reflector region relatively lower volumetric heat capacity compared to that of whole core. However, a small temperature increase is observed immediately after the transient due to the central reflector removal because it reaches energy equilibrium with the fuel region faster.

고령자 주거환경을 위한 상황인지 기반 에너지 저감형 위급상황 감지 시스템 설계 및 구현 (Design and Implementation of Context-Aware-based Emergency Detection System with Energy Reduction for Elderly Housing)

  • 마성훈;배홍민;김병서
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.159-165
    • /
    • 2017
  • 고령자들이 증가하면서 고령자들을 위한 다양한 IT 홈 시스템에 대한 연구가 활발히 진행 중이다. 하지만 대부분의 시스템들이 위급한 상황이 발생할 경우 데이터를 전송하는 부분에 초점이 맞춰져 있으며 주거환경에서의 에너지 저감 부분을 고려한 시스템은 찾아보기 쉽지 않다. 사실, 기존의 고령자 주거를 위한 시스템들은 시스템의 기능 수행을 위하여 오히려 더 많은 전력의 소비를 촉진한다. 본 논문에서는 에너지 저감기능을 포함한 위험상황을 모니터링 시스템을 연구 및 구현 한다. 본 시스템을 통하여 위급상황을 모니터링 하면서도 저전력 주거환경을 현실화함으로써 고령자 사회와 그린 사회의 두가지 미래 지향적인 요소를 만족할 수 있을 것이다.

부분구조 합성법을 이용한 공작기계 구조물의 동적설계 (Dynamic Design of Machine Tool Structure by Substructure Synthesis Method)

  • 이원광
    • 한국생산제조학회지
    • /
    • 제5권4호
    • /
    • pp.82-89
    • /
    • 1996
  • In this study, to choose the drilling m/c with analysis model for dynamic design of machine tool strctures, are used substucture syntheis method for reduction to degrees of freedom of dynamic model and analysis evaluation of substructures The dynamic factors of substurctures are examined by substructure synthesis method. And that dynamic design of structures for energy balancing are performed. The computer program for calculated of the dynamic and energy distribution analysis was developed. Result of numerical analysis by developed program obtained to conclusion as following. The design of machine tool structures by dynamic avoid the resonances, and are known to considered based on the energy balancing. These methods can be used effectively for the performance evaluation, design modification and improvement of dynamic performance evaluation, design modification and improvement of dynamic performance of machine tools.

  • PDF

The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting

  • Marian, Laurentiu;Giaralis, Agathoklis
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.665-678
    • /
    • 2017
  • In this paper the tuned mass-damper-inerter (TMDI) is considered for passive vibration control and energy harvesting in harmonically excited structures. The TMDI couples the classical tuned mass-damper (TMD) with a grounded inerter: a two-terminal linear device resisting the relative acceleration of its terminals by a constant of proportionality termed inertance. In this manner, the TMD is endowed with additional inertia, beyond the one offered by the attached mass, without any substantial increase to the overall weight. Closed-form analytical expressions for optimal TMDI parameters, stiffness and damping, given attached mass and inertance are derived by application of Den Hartog's tuning approach to suppress the response amplitude of force and base-acceleration excited single-degree-of-freedom structures. It is analytically shown that the TMDI is more effective from a same mass/weight TMD to suppress vibrations close to the natural frequency of the uncontrolled structure, while it is more robust to detuning effects. Moreover, it is shown that the mass amplification effect of the inerter achieves significant weight reduction for a target/predefined level of vibration suppression in a performance-based oriented design approach compared to the classical TMD. Lastly, the potential of using the TMDI for energy harvesting is explored by substituting the dissipative damper with an electromagnetic motor and assuming that the inertance can vary through the use of a flywheel-based inerter device. It is analytically shown that by reducing the inertance, treated as a mass/inertia-related design parameter not considered in conventional TMD-based energy harvesters, the available power for electric generation increases for fixed attached mass/weight, electromechanical damping, and stiffness properties.

무결정결함영역을 유지하면서 에너지를 절감하는 초크랄스키 실리콘 단결정 성장로 수냉관 최적 설계 (Optimal Water-cooling Tube Design for both Defect Free Process Operation and Energy Minimization in Czochralski Process)

  • 채강호;조나영;조민제;정현준;정재학;성수환;육영진
    • Current Photovoltaic Research
    • /
    • 제6권2호
    • /
    • pp.49-55
    • /
    • 2018
  • Recently solar cell industry needs the optimal design of Czochralski process for low cost high quality silicon mono crystalline ingot. Because market needs both high efficient solar cell and similar cost with multi-crystalline Si ingot. For cost reduction in Czochralski process, first of all energy reduction should be completed because Czochralski process is high energy consumption process. For this purpose we studied optimal water-cooling tube design and simultaneously we also check the quality of ingot with Von mises stress and V(pull speed of ingot)/G(temperature gradient to the crystallization) values. At this research we used $CG-Sim^{(R)}$ S/W package and finally we got improved water-cooling tube design than normally used process in present industry. The optimal water-cooling tube length should be 200mm. The result will be adopted at real industry.

Fuel Cycle Cost Modeling for the Generation IV SFR at the Pre-Conceptual Design Stage

  • Kim, Seong-Ho;Moon, Kee-Hwan;Kim, Young-In
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.51-52
    • /
    • 2009
  • Recently, several industrial countries using the fission energy have given attention to the Gen-IV SFR (sodium-cooled fast reactor) for achieving sustainable nuclear energy systems. In this context, an SFR is currently developed at the design concepts study stage in the Republic of Korea [Kim & Hahn 200909]. The sustainability of systems means economic, environment-friendly, proliferation-resistant, and safer systems. More specifically, this sustainability can be accomplished in terms of resource recycling and radioactive waste reduction. In the present work, the objective of fuel cycle cost modeling is to identify the impact of various conceptual options as a cost reduction measure for the Gen-IV SFR at the design concepts study stage. It facilitates the selection of several reasonable fuel cycle pathways for the future Gen-IV SFR from an economic viewpoint.

  • PDF

충격후 잔류압축강도시험에 의한 복합재료 적층판의 설계 (A Design Guide for Composite Laminates by the Compressive after Impact Tests)

  • 정태은;박경하;류정주
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2105-2113
    • /
    • 1995
  • The compressive tests under impact conditions were performed to establish a design guide for impact damage tolerance. The composition of layup was selected for the real cases of composite aircraft structure. The energy level of visible of visible damage threshold was determined as 7 Joules. It was found that the normalized bending stiffnesses in the direction of closely fixed boundary affected the area of damage. Graphite/epoxy used in the tests exhibited 60% reduction in compression strength at the energy level of visible damage threshold. Wet-conditioned specimens represented 9% reduction in residual compressive strength in comparison with room temperature ambient specimens. In this study, a design factor of 2.1 was proposed for the low velocity impact damage.