• Title/Summary/Keyword: Energy Materials

Search Result 11,285, Processing Time 0.036 seconds

Steel-Ball-Impact fracture Behavior of Soda-Lime Glass Plates Bonded with Glass Fabric/Epoxy Prepreg (직물형 유리섬유/에폭시 프리프레그로 피막된 판유리의 강구 충격 파괴 거동)

  • 김형구;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.20-25
    • /
    • 2000
  • In order to study the impact fracture behavior of brittle materials, a steel-ball-impact experiment was Performed. Five kinds of materials were used in this study : soda-lime glass plates, glass/epoxy prepreg-one layer-bonded and unbonded glass plates, glass/epoxy prepreg-three layers-bonded and unbonded glass plates. Fracture patterns, the maximum stress and absorbed fracture energy were observed according to various impact velocities 40-120m/s. With increasing impact velocity, ring crack, cone crack, radial crack and lateral crack took place in the interior of glass plates. The generation of such cracks was largely reduced with glass/epoxy prepreg coating. Consequently, it is thought that the characteristics of the dynamic Impact fracture behavior could be evaluated using the absorbed fracture energy and the maximum stress measured at the back surface of glass plates.

  • PDF

Hydrogen Evolution Properties of Alanate-based Hydrogen Storage Materials (알라네이트 계 수소 저장 물질의 수소 방출 특성)

  • JEONG, HEONDO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.361-368
    • /
    • 2017
  • Alanate-based materials, which were known to have high hydrogen storage capacity, were synthesized by mechanochemically metathesis reaction of metal chloride and sodium alanate without solvent. XRD patterns of synthesized materials showed that metathesis reaction of cations between metal chloride and sodium alanate was progressed favorably without any solvent. Magnesium alanate showed that 3.2 wt.% of hydrogen was evolved by the thermal decomposition. The addition of a small amount of Ti to the magnesium alanate greatly reduced hydrogen evolution temperature. Also, Ti doped magnesium alanate had a good regeneration property. Both the calcium and lithium-magnesium alanate showed the lower starting temperature of the two step hydrogen evolution and fast kinetics for the hydrogen evolution.

Electrode Properties for Water Electrolysis of Hydrophilic Carbon Paper with Thermal Anneal (열처리된 친수성 카본 페이퍼 전극의 전기 물 분해 특성)

  • Yoo, Il-Han;Seo, Hyungtak
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.241-245
    • /
    • 2016
  • Hydrogen is considered a potential future energy source. Among other applications of hydrogen, hydrogen-rich water is emerging as a new health care product in industrial areas. Water electrolysis is typically used to generate a hydrogen rich water system. We annealed 10AA carbon paper in air to use it as an electrode of a hydrogen rich water generator. Driven by annealing, structural changes of the carbon paper were identified by secondary electron microscope analysis. Depending on the various annealing temperatures, changes of the hydrophilic characteristics were demonstrated. The crystal structures of pristine and heat-treated carbon paper were characterized by X-ray diffraction. Improvement of the efficiency of the electrochemical oxygen evolution reaction was measured via linear voltammetry. The optimized annealing temperature of 10AA carbon paper showed the possibility of using this material as an effective hydrogen rich water generator.

Incorporation of Antibacterial Natural Extract into Layered Double Hydroxide through Memory Effect for Antibacterial Materials (금속이중층수산화물의 메모리효과를 이용한 항균 천연소재의 담지 및 항균소재의 개발)

  • Kim, Hyeong-Jun;Jeong, Do-Gak;O, Je-Min
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.301-315
    • /
    • 2019
  • We prepared hybrids between layered double hydroxide (LDH) and natural plant extract such as Peaonia suffruticosa Andrews (PS) and Peaonia Japonica (PJ) which was confirmed anti-bacterial activity through paper disc diffusion assay. According to X-ray diffractometer, scanning electron microscope, zeta-potential measurement and quantification of extract loading amount in hybrids, we confirmed that similar amount of PS and PJ loaded on inter-particle pore of LDH with partial adsorption on surface of LDH through reconstruction process. We also evaluated the bacterial colony forming inhibition of PS extract, PJ extract, PS-LDH and PJ-LDH hybrids against Escherichia coli as gram negative bacterium and Bacillus subtilis as gram positive bacterium, suggesting that both hybrids have enhanced anti-bacterial activity compared with extract itself.

A Study on Energy Release Rate for Interface Cracks in Anisotropic Dissimilar Materials (이방성 이종재 접합계면 균열의 에너지 해방률에 관한 연구)

  • Kim, Jin-Gwang;Jo, Sang-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1835-1843
    • /
    • 2001
  • The energy release rate for an interface crack in anisotropic dissimilar materials was obtained by the eigenfunction expansion method and also was analyzed numerically by the reciprocal work contour integral method. It was shown that the results for orthotropic dissimilar materials are consistent with the other worker's results.

Effect of Copper Oxide on Migration and Interaction of Protons in Barium Zirconate (BaZrO3에서의 프로톤 전도와 상호작용에 대한 CuO의 영향)

  • Jeong, Yong-Chan;Kim, Dae-Hee;Kim, Byung-Kook;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.195-199
    • /
    • 2011
  • The effect of copper oxide on migration and interaction of protons in barium zirconate was investigated using density functional theory. One copper atom was substituted for a zirconium atom site, and a proton was added to a $3{\times}3{\times}3$ barium zirconate superstructure. An energy barrier of 0.89 eV for proton migration was the highest among several energy barriers. To investigate the interaction between multiple protons and a copper atom, two protons were added to the superstructure. Various proton positions were determined by the interaction between the two protons and the copper atom.

A Study on Energy Levels and Electron States of Organic Light-Emitting Materials (유기 발광체의 에너지 준위 및 전자 상태 연구)

  • Kim, Young-Kwan;Kim, Young-Sik;Seo, Ji-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.299-305
    • /
    • 2005
  • In this study, we designed color of tunable and high efficient organic materials using the quantum dynamics and the semi-empirical calculation, and applied this results to the fabrication of organic light-emitting diodes. Also we optimized the molecular structure of phosphorescent materials and the energy transfer from a host to a dye which makes organic light-emitting diodes improve. Using quantum dynamics method, the molecular structures of ligand only and the whole metal chelate were optimized, and these energy levels were calculated. From this test results, we could understand the emission mechanism of phosphors with various ligands as well as design the proper ligands reducing the T-T annihilation and the carrier lifetime. We also could design ligands with various colors using this test method.

Calcium Sulfo Aluminate (CSA) Cement from Coal Ash Utilized as Barriers for Radioactive Waste Disposal

  • Ramakrishna, Chilakala;Thriveni, Thenepalli;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • In this paper, we reviewed briefly about the barrier materials for the radioactive waste disposal. The primary concept of the radioactive waste disposal is safety. The goal of the radioactive waste management is to assure that the environment is not adversely affected and also public. There are a wide variety of materials are available for the radioactive waste disposal or storage. Among those coal fly ash is one of the significant materials are used as a barrier material. Here we reported, the Calcium sulfo aluminate (CSA) from coal fly ash is effectively suitable for the radioactive waste disposal. This is one of the ways of utilization of waste and manufactured the valuable materials for future indeeds.

Correlation Analysis of the Thermal Conductivity Heat Flow Meter and MTPS (Modified Transient Plane Source) Method Using Wood Flooring and Wall Materials (목질마루바닥재와 벽체용 재료를 이용한 평판열류계법과 MTPS (Modified Transient Plane Source)법의 열전도율 상관관계 분석)

  • Cha, Jung-Hoon;Seo, Jung-Ki;Kim, Su-Min
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.2
    • /
    • pp.118-125
    • /
    • 2011
  • These days global warming is the most important problem and the most important factor is high emission of carbon dioxide. The 23% of carbon dioxide emission for building construction must be reduced. Thermal conductivity is the most basic factor that can decrease the energy consumption especially insulation. Therefore, an accurate and continuous thermal conductivity measurement can be a way to save energy. In this paper, there are methods about how to investigate thermal conductivity measurements and comparing two methods which are the Heat Flow Meter 436 and TCi.

  • PDF

Remarkable Stability of Graphene/Ni-Al Layered Double Hydroxide Hybrid Composites for Electrochemical Capacitor Electrodes

  • Lee, Jeong Woo;In, Su-Il;Kim, Jong-Duk
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • Graphene/Ni-Al layered double hydroxide (LDH) hybrid materials were synthesized by a hydrothermal reaction. Hexagonal Ni-Al LDH particles nucleated and grew on graphene sheets, thus preventing restacking of the graphene sheets and aggregation of the Ni-Al LDH nanoparticles upon drying. Electrode made from the graphene/Ni-Al LDH hybrid materials showed a substantial improvement in electrochemical capacitance relative to those made with pure Ni-Al LDH nanoparticles. In addition, the graphene/Ni-Al LDH hybrid composite materials showed remarkable stability after 4000 cycles with over 100% capacitance retention. These materials are thus very promising for use in electrochemical capacitor electrodes.