Browse > Article
http://dx.doi.org/10.12925/jkocs.2005.22.4.1

A Study on Energy Levels and Electron States of Organic Light-Emitting Materials  

Kim, Young-Kwan (Dept. of Science, College of Eng., Hongik Univ.)
Kim, Young-Sik (Dept. of Science, College of Eng., Hongik Univ.)
Seo, Ji-Hoon (Dept. of Information Display, Hongik Univ.)
Publication Information
Journal of the Korean Applied Science and Technology / v.22, no.4, 2005 , pp. 299-305 More about this Journal
Abstract
In this study, we designed color of tunable and high efficient organic materials using the quantum dynamics and the semi-empirical calculation, and applied this results to the fabrication of organic light-emitting diodes. Also we optimized the molecular structure of phosphorescent materials and the energy transfer from a host to a dye which makes organic light-emitting diodes improve. Using quantum dynamics method, the molecular structures of ligand only and the whole metal chelate were optimized, and these energy levels were calculated. From this test results, we could understand the emission mechanism of phosphors with various ligands as well as design the proper ligands reducing the T-T annihilation and the carrier lifetime. We also could design ligands with various colors using this test method.
Keywords
organic light-emitting diodes; density functional theory; organic materials; blue; boron;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Era, C. Adachi, T. Tsutsui, and S. Saito, Chem. Phys. Lett., 178, 488, (1991)
2 Z. Shen, P.E. Burrows, V. Bulovic, S.R. Forrest, and M.E. Thompson, Science, 276, 2009 (1997)
3 P.E. Burrows, G. Gu, V. Bulovic, Z. Shen, S.R. Forrest, and M.E. Thompson, IEEE Trans. Electron Devices, 44, 1188, (1997)
4 P.E. Burrows and S.R. Forrest, Appl. Phys. Lett., 76, 2493, (2000)
5 J.M. Shi and C.W. Tang, Appl. Phys. Lett., 70, 1665, (1997)
6 M. E. Thompson, P. E. Burrows, and S. R. Forrest, Current Option in Solid State and Materials Science, 4, 369, (1999)
7 H. Hamada, IEEE Trans. Electron Device, 44, 1208, (1998)
8 H.C. Hamada, C. Adachi, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys., 31, 1812, (1992)
9 S.-F. Lui, Q. Wu, H.L. Schmider, H. Azia, N.-X. Hu, A.Z. Popovie, and S. Wang, J. Am Chem. Soc., 122, 3671 (2000)
10 V.-E. Choohe, S. Shi, J. Curless, C.L. Shieh, H.C. Lee, F. So, J. Shen, and J. Yang, Appl. Phys. Lett., 75, 172, (1999)   DOI
11 C. W. Tang and SA Vanslyke, Appl. Phys. Let, 51, 913, (1987)   DOI
12 M. J. Frisch, et al., 'Gaussian 98', revision A.9, Gaunssian, Inc., Pittsburgh, PA, 198
13 Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi, and T. Usuki, Appl. Phys. Lett., 75, 1682, (1999)
14 Y. Sakakibara, S. Okutsu, T. Enokida, and T. Tani, Appl. Phys. Lett., 74, 2587, (1999)
15 M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. R. Thompson, and S. R. Forrest, Nature, 395, 151, (1998)
16 M. Yoshida, A Fujii, Y. Ohmori, and K. Yoshino, Jpn. J. Appl. Phys., 35, 1397, (1996)   DOI