DOI QR코드

DOI QR Code

Hydrogen Evolution Properties of Alanate-based Hydrogen Storage Materials

알라네이트 계 수소 저장 물질의 수소 방출 특성

  • JEONG, HEONDO (Clean Fuel Laboratory, Korea Institute of Energy Research)
  • 정헌도 (한국에너지기술연구원 청정연료연구실)
  • Received : 2017.06.26
  • Accepted : 2017.08.30
  • Published : 2017.08.30

Abstract

Alanate-based materials, which were known to have high hydrogen storage capacity, were synthesized by mechanochemically metathesis reaction of metal chloride and sodium alanate without solvent. XRD patterns of synthesized materials showed that metathesis reaction of cations between metal chloride and sodium alanate was progressed favorably without any solvent. Magnesium alanate showed that 3.2 wt.% of hydrogen was evolved by the thermal decomposition. The addition of a small amount of Ti to the magnesium alanate greatly reduced hydrogen evolution temperature. Also, Ti doped magnesium alanate had a good regeneration property. Both the calcium and lithium-magnesium alanate showed the lower starting temperature of the two step hydrogen evolution and fast kinetics for the hydrogen evolution.

Keywords

References

  1. M. H. Kim, E. K. Lee, J. H. Jun, C. Y. Han, S. J. Kong, B. K. Lee, T. J. Lee, and K. J. Yoon, " Hydrogen production by catalytic decomposition of methane over activated carbons : deactivation study", Korean J. Chem. Eng., Vol. 20, 2003, pp. 835-839. https://doi.org/10.1007/BF02697284
  2. S. Satyapal, J. Perovic, C. Read, G. Thomas, and G. Ordaz, "The U.S. Dspartment of Energy's national hydrogen storage project : progress towards meeting hydrogen-powered vehicle requirements", Catal. Today, Vol. 120, 2007, pp. 246-256. https://doi.org/10.1016/j.cattod.2006.09.022
  3. J. H. Baek, J. M. Jeong, J. H. Park, K. B. Yi, and T. W. Rhee, "Effect of Precursor addition Time on Catalytic Characteristics of Cu/ZnO/$Al_2O_3$ Catalyst for Water Gas Shift Reaction", Trans. of the Korean Hydrogen and New Energy Society, Vol. 26, No. 5, 2015, pp. 423-430. https://doi.org/10.7316/KHNES.2015.26.5.423
  4. S. H. Jhi, "A theoretical study of activated nanostructured materials for hydrogen storage", Catal. Today, Vol. 120, 2007, pp 383-388. https://doi.org/10.1016/j.cattod.2006.09.025
  5. K. M. Thomas, " Hydrogen adsorption and storage on porous materials", Catal. Today, Vol. 120, 2007, pp 389-398. https://doi.org/10.1016/j.cattod.2006.09.015
  6. I. Rosso, C. Galletti, G. Saracco, E. Garrone, and V. Specchia, "Development of A zeolites-suppoerte noble-metal catalysts for CO preferential oxidation : $H_2$ gas purification for fuel cell", Appl. Catal. B, Vol. 48, 2004, pp. 195-203. https://doi.org/10.1016/j.apcatb.2003.10.016
  7. M. Fichtner, and O. Fuhr, " Synthesis and structure of magnesium alanate and two solvent adduct", J. Alloys Comp., Vol. 345, 2002, pp. 286-296. https://doi.org/10.1016/S0925-8388(02)00478-4
  8. M. Mamatha, B. Bogdanovic, M. Felderhoff, A. Pommerin, W. Schmidt, F. Schuth, and C. Weidenthaler, "Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium-magnesium alanates", J. Alloys Comp., Vol. 407, 2006, pp. 78-86. https://doi.org/10.1016/j.jallcom.2005.06.069
  9. J. Y. Huang, Y. K. Wu, and H. Q. Ye, "Phase transformation of cobalt inducrd by ball milling", Appl. Phys. Lett., Vol. 66, 1995, p. 308. https://doi.org/10.1063/1.113527
  10. Y. Kim, E. K. Lee, J. H. Shim, Y. W. Cho, and K. B. Yoon, "Mechamochemical synthesis and thermal decomposition of $Mg(AlH_4)_2$", J. Alloys Comp., Vol. 422, 2006, pp. 283-287. https://doi.org/10.1016/j.jallcom.2005.11.063
  11. M. Fichtner, O. Fuhr, and O. Kircher, "Magnesium alanate-a material for reversivle hydrogen storage?", J. Alloys Comp., Vol. 356-357, 2003, pp. 418-422. https://doi.org/10.1016/S0925-8388(02)01236-7
  12. A. Fossdal, H. W. Brinks, M. Fichtner, and B. C. Hauback, " Thermal decomposition of $Mg(AlH_4)_2$ studied by in situ synchrotron X-ray differaction", J. Alloys Comp., Vol. 404-406, 2005, pp. 752-756. https://doi.org/10.1016/j.jallcom.2004.12.169
  13. K. Komiya, N. Morisaku, Y. Shinzato, K, Ikeda, S. Orimo, Y. Ohki, K. Tatsumi, H. Yukata, and M. Morinaga, "Synthesis and dehydrogenation of $(AlH_4)_2$ (M=Mg, Ca)", J. Alloys Comp., Vol. 446-447, 2007, pp. 237-241. https://doi.org/10.1016/j.jallcom.2007.01.119
  14. J. A. Dilts, and E. C. Ashby, "Thermal decomposition of complex metal hydride", Inorg. Chem., Vol. 11, 1972, pp. 1230-1236. https://doi.org/10.1021/ic50112a015
  15. M. Fichtner, J. Engel, O. Fuhr, A. Gloss, O. Rubner, and R. Ahlrichs, "The structure of magnesium alanate", Inorg. Chem., Vol. 42, 2003, pp. 7060-7066. https://doi.org/10.1021/ic034160y
  16. V. P. Balema, J. W. Wiench, K. W. Dennis, P. Pruski, and V. K. Pecharsky, "Titanium catalyzed solid-state transformation in LiAlH4 during high-energy ball milling", J. Alloys Comp., Vol. 329, 2001, pp. 108-114. https://doi.org/10.1016/S0925-8388(01)01570-5
  17. K. J. Gross, E. h. Majzoub, and S. W. Spangler, "The effect of titanium precursor on hydriding properties of alanates", J. Alloys Comp., Vol. 356-357, 2003, pp. 423-428. https://doi.org/10.1016/S0925-8388(03)00141-5