• Title/Summary/Keyword: Energy Materials

Search Result 11,245, Processing Time 0.037 seconds

Characteristics Analysis of Measurement Variables for Detecting Anomaly Signs of Thermal Runaway in Lithium-Ion Batteries (리튬이온 배터리의 열폭주 이상징후 감지를 위한 측정 변수 특성 분석)

  • LIM, BYUNG-JU;CHO, SUNG-HOON;LEE, GA-RAM;CHOI, SEOK-MIN;PARK, CHANG-DAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.85-94
    • /
    • 2022
  • To detect anomaly signs of thermal runaway in advance, this study analyzed the signals from various sensors installed in lithium-ion batteries. The thermal runaway mechanism was analyzed, and measurement variables for anomalies of a battery cell were surface temperature, strain, and gas concentration. The changes and characteristics of three variables during the thermal runaway process were analyzed under the abuse environment: the overheat and the overcharge. In experiment, the thermal runaway of the battery proceeded in the initial developing stage, the outgassing stage, and the ignition stage. Analysis from the measured data indicated that the suitable variable to detect all stages of thermal runaway is the surface temperature of the battery, and surface strain is alternative.

Prediction of Machine Tool's Energy Consumption during the Cutting Process (공작기계의 절삭공정 소비 에너지 예측기술)

  • Lee, Chan-Hong;Hwang, Jooho;Heo, Segon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.329-337
    • /
    • 2015
  • In this paper, a simulation based estimation method of energy consumption of the spindle and feed drives for the NC machine tool during the cutting process is proposed. To predict energy consumption of the feed drive system, position, velocity, acceleration and jerk of the table are analyzed based on NC data and then the power and energy are calculated considering friction force and mass of the stages. Energy consumption of the spindle is estimated based on models from acceleration motion of rotating parts, friction torque and power loss of motors. Moreover, simulation models of cutting power and energy for the material removal along the NC tool paths are proposed.

Additive Manufacturing Optimization of Directed Energy Deposition-Processed Ti-6Al-4V Alloy using Energy Density and Powder Deposition Density (에너지 밀도 및 분말 증착 밀도를 고려한 직접 에너지 증착법 기반 Ti-6Al-4V 합금의 적층공정 최적화)

  • Lee, Yukyeong;Kim, Eun Sung;Chun, Se-Ho;Seol, Jae Bok;Sung, Hyokyung;Oh, Jung Seok;Kim, Hyoung Seop;Lee, Taekyung;Nam, Tae-Hyun;Kim, Jung Gi
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.491-496
    • /
    • 2021
  • The process optimization of directed energy deposition (DED) has become imperative in the manufacture of reliable products. However, an energy-density-based approach without a sufficient powder feed rate hinders the attainment of an appropriate processing window for DED-processed materials. Optimizing the processing of DED-processed Ti-6Al- 4V alloys using energy per unit area (Eeff) and powder deposition density (PDDeff) as parameters helps overcome this problem in the present work. The experimental results show a lack of fusion, complete melting, and overmelting regions, which can be differentiated using energy per unit mass as a measure. Moreover, the optimized processing window (Eeff = 44~47 J/mm2 and PDDeff = 0.002~0.0025 g/mm2) is located within the complete melting region. This result shows that the Eeff and PDDeff-based processing optimization methodology is effective for estimating the properties of DED-processed materials.

Controlling the surface energy and electrical properties of carbon films deposited using unbalanced facing target magnetron sputtering plasmas

  • Javid, Amjed;Kumar, Manish;Yoon, Seok Young;Lee, Jung Heon;Han, Jeon Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.231.1-231.1
    • /
    • 2015
  • Surface energy, being an important material parameter to control its interactions with the other surfaces plays a key role in bio-related application. Carbon films are found very promising due to their characteristics such as wear and corrosion resistant, high hardness, inert, low resistivity and biocompatibility. The present work deals with the deposition of carbon films using unbalanced facing target magnetron sputtering technique. The discharge characteristics were studied using optical emission spectroscopy and correlated with the film properties. Surface energy was investigated through contact angle measurement. The ID/IG ratio as calculated from Raman spectroscopy data increases with the increase in power density due to the higher number of sp2 clusters embedded in the amorphous matrix. The deposited films were smooth and homogeneous as observed by Atomic force microscopy having RMS roughness in the range of 1.74 to 2.25 nm. It is observed that electrical resistivity and surface energy varies in direct proportionality with operating pressure and has inverse relation with power density. The surface energy results clearly exhibited that these films can have promising applications in cell cultivation.

  • PDF

Piezoelectric Energy Harvesting Characteristics of GaN Nanowires Prepared by a Magnetic Field-Assisted CVD Process

  • Han, Chan Su;Lee, Tae Hyeon;Kim, Gwang Mook;Lee, Da Yun;Cho, Yong Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.167-170
    • /
    • 2016
  • Various piezoelectric nanostructures have been extensively studied for competitive energy harvesting applications. Here, GaN nanowires grown by a nonconventional magnetic field-assisted chemical vapor deposition process were investigated to characterize the piezoelectric energy harvesting characteristics. As a controlling parameter, only the growth time was changed from 15 min to 90 min to obtain different crystallinity and morphology of the nanowires. Energy harvesting characteristics were found to depend largely on the growth time. A longer growth time tended to lead to an increased output current, which is reasonable when considering the enhanced charge potentials and crystallinity. A maximum output current of ~14.1 nA was obtained for the 90 min-processed nanowires.

Analysis of the Failure Position in the Unimorph Cantilever for Energy Harvesting (에너지 하베스팅용 압전 캔틸레버의 위치에 따른 파단점 분석)

  • Kim, Hyung-Chan;Jeong, Dae-Yong;Yoon, Seok-Jin;Kim, Hyun-Jai
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.121-123
    • /
    • 2007
  • Energy harvesting from the vibration through the piezoelectric effect has been studied for powering the wireless sensor node. As piezoelectric unimorph cantilever structure can transfer low vibration to large displacement, this structure was commonly deployed to harvest electric energy from vibrations. Piezoelectric unimorph structure was composed of small stiff piezoelectric ceramic on the large flexible substrate. As there is the large Young's modulus difference between the flexible substrate and stiff piezoelectric ceramic, flexible substrate could not homogeneously transfer the vibration to stiff piezoelectric ceramic. As a result, most piezoelectric ceramics had been broken at the certain point. We measured and analyzed the stress distribution on the piezoelectric ceramic on the cantilever.

The Effect of Pre-compaction on Density and Mechanical Properties of Magnetic Pulsed and Sintered $Al_2O_3$ Bulk

  • Hong, S.J.;Lee, J.K.;Lee, M.K.;Kim, W.W.;Rhee, C.K.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.967-968
    • /
    • 2006
  • This research reports for the successful consolidation of $Al_2O_3$ powder with retained ultra-fine structure using MPC and sintering. Measurements in the consolidated $Al_2O_3$ bulk indicated that hardness, fracture toughenss, and breakdown voltage have been much improved relative to the conventional polycrystalline materials. Finally, optimization of the compaction parameters and sintering conditions will lead to the consolidation of $Al_2O_3$ nanopowder with higher density and even further enhanced mechanical properties.

  • PDF

Energy Absorption Capability of Amorphous Alloys During Homogeneous Deformation (균일변형시 비정질 합금의 에너지 흡수력 평가)

  • Park, Kyoung-Won;Lee, Chang-Myeon;Lee, Hong-Gi;Lee, Jae-Hoon;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.572-576
    • /
    • 2008
  • Elastostatic compression tests were carried out on amorphous alloys to evaluate their energy absorption capability during homogeneous deformation at room temperature. Experiments demonstrated that a compressive stress below the global yield imposed on amorphous alloys for extended periods causes homogeneous plastic strain associated with the irreversible structural disordering. During the disordering process, free volume was created, dissipating the externally applied strain energy and the rate of creation was found to converge to a saturated value. We evaluated the capability of energy absorption of amorphous alloys during homogeneous deformation using recent theories on the evolution of the structural state.

Pretreatment Effect on CO Oxidation over Highly Ordered Mesoporous Silver Catalyst

  • Shon, Jeong-Kuk;Park, Jung-Nam;Hwang, Seong-Hee;Jin, Mingshi;Moon, Ki-Young;Boo, Jin-Hyo;Han, Tae-Hee;Kim, Ji-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.415-418
    • /
    • 2010
  • Highly ordered mesoporous silver material was successfully synthesized from a mesoporous silica template (KIT-6) with 3-D channel structure using the nano-replication method. The effects of $H_2$ or $O_2$ pretreatments on the catalytic performance of the mesoporous silver were investigated using a temperature programmed CO oxidation technique in a fixed bed reactor. The mesoporous silver material that was pretreated with $H_2$ exhibited an excellent catalytic activity compared to the as-prepared and $O_2$-pretreated catalysts. Moreover, this present mesoporous silver material showed good catalytic stability. For the CO oxidation, the apparent activation energy of the $H_2$-pretreated mesoporous silver catalyst was $61{\pm}0.5\;kJ\;mol^{-1}$, which was also much lower than the as-prepared ($132{\pm}1.5\;kJ\;mol^{-1}$) and $O_2$-pretreated ($124{\pm}1.4\;kJ\;mol^{-1}$) catalysts.