DOI QR코드

DOI QR Code

Piezoelectric Energy Harvesting Characteristics of GaN Nanowires Prepared by a Magnetic Field-Assisted CVD Process

  • Han, Chan Su (Department of Materials Science & Engineering, Yonsei University) ;
  • Lee, Tae Hyeon (Department of Materials Science & Engineering, Yonsei University) ;
  • Kim, Gwang Mook (Department of Materials Science & Engineering, Yonsei University) ;
  • Lee, Da Yun (Department of Materials Science & Engineering, Yonsei University) ;
  • Cho, Yong Soo (Department of Materials Science & Engineering, Yonsei University)
  • Received : 2016.02.23
  • Accepted : 2016.03.21
  • Published : 2016.03.31

Abstract

Various piezoelectric nanostructures have been extensively studied for competitive energy harvesting applications. Here, GaN nanowires grown by a nonconventional magnetic field-assisted chemical vapor deposition process were investigated to characterize the piezoelectric energy harvesting characteristics. As a controlling parameter, only the growth time was changed from 15 min to 90 min to obtain different crystallinity and morphology of the nanowires. Energy harvesting characteristics were found to depend largely on the growth time. A longer growth time tended to lead to an increased output current, which is reasonable when considering the enhanced charge potentials and crystallinity. A maximum output current of ~14.1 nA was obtained for the 90 min-processed nanowires.

Keywords

References

  1. Z. L. Wang and J. H. Song, "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays," Science, 14 [312] 242-46 (2006).
  2. H. B. Kang, J. Y. Chang, K. S. Koh, L. Lin, and Y. S. Cho, "High Quality Mn-Doped (Na,K)$NbO_3$ Nanofibers for Flexible Piezoelectric Nanogenerators," ACS Appl. Mater. Inter., 6 [13] 10576-82 (2014). https://doi.org/10.1021/am502234q
  3. H. B. Kang, C. S. Han, J. C. Pyun, W. H. Ryu, C. Y. Kang, and Y. S. Cho, "(Na,K)$NbO_3$ Nanoparticle-Embedded Piezoelectric Nanofiber Composites for Flexible Nanogenerators," Compos. Sci. Technol., 111 [5] 1-8 (2015). https://doi.org/10.1016/j.compscitech.2015.02.015
  4. M. Minary-Jolandan, R. A. Bernal, I. Kuljanishvili, V. Parpoil, and H. D. Espinosa, "Individual GaN Nanowires Exhibit Strong Piezoelectricity in 3D," Nano Lett., 12 [2] 970-76 (2012). https://doi.org/10.1021/nl204043y
  5. H. D. Espinosa, R. A. Bernal, and M. Minary-Jolandan, "A Review of Mechanical and Electromechanical Properties of Piezoelectric Nanowires," Adv. Mater., 24 [34] 4656-75 (2012). https://doi.org/10.1002/adma.201104810
  6. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, "One-Dimensional Nanostructure: Synthesis, Characterization, and Applications," Adv. Mater., 15 [5] 353-89 (2003). https://doi.org/10.1002/adma.200390087
  7. P. M. Rorvik, T. Grande, and M. A. Einarsrud, "One-Dimensional Nanostructures of Ferroelectric Perovskites," Adv. Mater., 23 [35] 4007-34 (2011). https://doi.org/10.1002/adma.201004676
  8. R. S. Wagner and W. C. Ellis, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth," Appl. Phys. Lett., 4 [5] 89-90 (1964). https://doi.org/10.1063/1.1753975
  9. X. Duan and C. M. Lieber, "General Synthesis of Compound Semiconductor Nanowires," Adv. Mater., 12 [4] 298-302 (2000). https://doi.org/10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
  10. V. Purushothaman, V. Ramakrishnan, and K. Jeganathan, "Interplay of VLS and VS Growth Mechanism for GaN Nanowires by a Self-Catalytic Approach," RSC Adv., 2 [11] 4802-6 (2012). https://doi.org/10.1039/c2ra01000c
  11. H. Li, A. H. Chin, and M. K. Sunkara, "Direction-Dependent Homoepitaxial Growth of GaN Nanowires," Adv. Mater., 18 [2] 216-20 (2006). https://doi.org/10.1002/adma.200501716
  12. J. S. Kim, B. C. Mohanty, C. S. Han, S. J. Han, G. H. Ha, L. Lin, and Y. S. Cho, "In Situ Magnetic Field-Assisted Low Temperature Atmospheric Growth of GaN Nanowires with Ni Catalyst via the Vapor-Solid-Liquid Mechanism," ACS Appl. Mater. Inter., 6 116-21 (2014). https://doi.org/10.1021/am403085y
  13. J. Yuan, H. Gao, F. Schacher, Y. Xu, R. Richter, W. Tremel, and A. H. E. Muller, "Alignment of Tellurium Nanorods via a Magnetization-Alignment-Demagnetization ("MAD") Process Assisted by an External Magnetic Field," ACS Nano, 3 [6] 1441-50 (2009). https://doi.org/10.1021/nn9002715
  14. C. M. Hangarter and N. V. Myung, "Magnetic Alignment of Nanowires," Chem. Mater., 17 [6] 1320-24 (2005). https://doi.org/10.1021/cm047955r
  15. M. Tanase, L. A. Bauer, A. Hultgren, D. M. Silevitch, L. Sun, D. H. Reich, P. C. Searson, and G. J. Meyer, "Magnetic Alignment of Fluorescent Nanowires," Nano Lett., 1 [3] 155-58 (2001). https://doi.org/10.1021/nl005532s
  16. S. W. Lee, M. C. Jeong, J. M. Myoung, G. S. Chae, and I. J. Chung, "Magnetic Alignment of ZnO Nanowires for Optoelectronic Device Applications," Appl. Phys. Lett., 90 [13] 133115 (2007). https://doi.org/10.1063/1.2717575
  17. A. K. Bentley, J. S. Trethewey, A. B. Ellis, and W. C. Crone, "Magnetic Manipulation of Copper-Tin Nanowires Capped with Nickel Ends," Nano Lett., 4 [3] 487-90 (2004). https://doi.org/10.1021/nl035086j
  18. O. Chinchun, M. E. Randall, and B. Y. Benjamin, "On the Controllability of Nanorod Alignment in Magnetic Fluids," J. Appl. Phys., 103 [7] 07E910 (2008). https://doi.org/10.1063/1.2838626
  19. C. T. Huang, J. H. Song, W. F. Lee, Y. Ding, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, "GaN Nanowire Arrays for High-Output Nanogenerators," J. Am. Chem. Soc., 132 [13] 4766-71 (2010). https://doi.org/10.1021/ja909863a
  20. C. H. Wang, W. S. Liao, Z. H. Lin, N. J. Ku, Y. C. Li, Y. C. Chen, Z. L. Wang, and C. P. Liu, "Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration," Adv. Energy Mater., 4 [16] 1400392 (2014). https://doi.org/10.1002/aenm.201400392
  21. L. Lin, C. H. Lai, Y. Hu, Y. Zhang, X. Wang, C. Xu, R. L. Snyder, L. J. Chen, and Z. L. Wang, "High Output Nanogenerator Based on Assembly of GaN Nanowires," Nanotechnology, 22 475401 (2011). https://doi.org/10.1088/0957-4484/22/47/475401
  22. Y. S. Zhou, R. Hinchet, Y. Yang, G. Ardila, R. Songmuang, F. Zhang, Y. Zhang, W. Han, K. Pradel, L. Montes, M. Mouis, and Z. L.Wang, "Nano-Newton Transverse Force Sensor Using a Vertical GaN Nanowire Based on the Piezotronic Effect," Adv. Mater., 25 [6] 883-88 (2013). https://doi.org/10.1002/adma.201203263
  23. C. Y. Chen, G. Zhu, Y. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. J. Chou, and Z. L. Wang, "Gallium Nitride Nanowire Based Nanogenerators and Light-Emitting Diodes," ACS Nano, 6 [6] 5687-92 (2012). https://doi.org/10.1021/nn301814w
  24. Z. L. Wang, "Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics," Adv. Funct. Mater., 18 [22] 3553-67 (2008). https://doi.org/10.1002/adfm.200800541
  25. B. X. Wang, J. Song, F. Zhang, C. He, Z. Hu, and Z. L. Wang, "Electricity Generation Based on One-Dimensional Group-III Nitride Nanomaterials," Adv. Mater., 22 [19] 2155-58 (2010). https://doi.org/10.1002/adma.200903442
  26. C. Y. Chen, J. H. Huang, J. Song, Y. Zhou, L. Lin, P. C. Huang, Y. Zhang, C. P. Liu, J. H. He, and Z. L. Wang, "Anisotropic Outputs of a Nanogenerator from Oblique-Aligned ZnO Nanowire Arrays," ACS Nano, 5 [8] 6707-13 (2011). https://doi.org/10.1021/nn202251m
  27. C. T. Huang, J. Song, C. M. Tasi, W. F. Lee, D. H. Lien, Z. GaO, Y. Hao, J. Chen, and Z. L. Wang, "Single-InN-Nanowire Nanogenerator with Upto 1 V Output Voltage," Adv. Mater., 22 [36] 4008-13 (2010). https://doi.org/10.1002/adma.201000981

Cited by

  1. Magnetic Field-Assisted Chemical Vapor Deposition of Iron Oxide Thin Films: Influence of Field-Matter Interactions on Phase Composition and Morphology vol.10, pp.None, 2019, https://doi.org/10.1021/acs.jpclett.9b02381
  2. 광대역 압전 에너지 하베스팅 기술 vol.22, pp.1, 2019, https://doi.org/10.31613/ceramist.2019.22.1.05
  3. Volatile Rhenium(I) Compounds with Re-N Bonds and Their Conversion into Oriented Rhenium Nitride Films by Magnetic Field-Assisted Vapor Phase Deposition vol.58, pp.15, 2016, https://doi.org/10.1021/acs.inorgchem.9b01656