Energy Absorption Capability of Amorphous Alloys During Homogeneous Deformation

균일변형시 비정질 합금의 에너지 흡수력 평가

  • Park, Kyoung-Won (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Chang-Myeon (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Hong-Gi (Nano-surface Technology Team, Korea Institute of Industrial Technology) ;
  • Lee, Jae-Hoon (Advanced Materials Division, Korea Institute of Industrial Technology) ;
  • Lee, Jae-Chul (Department of Materials Science and Engineering, Korea University)
  • 박경원 (고려대학교 신소재공학부) ;
  • 이창면 (고려대학교 신소재공학부) ;
  • 이홍기 (한국생산기술연구원 표면기술지원센터) ;
  • 이재훈 (한국생산기술연구원 신소재본부 경량소재팀) ;
  • 이재철 (고려대학교 신소재공학부)
  • Received : 2008.07.06
  • Published : 2008.09.25

Abstract

Elastostatic compression tests were carried out on amorphous alloys to evaluate their energy absorption capability during homogeneous deformation at room temperature. Experiments demonstrated that a compressive stress below the global yield imposed on amorphous alloys for extended periods causes homogeneous plastic strain associated with the irreversible structural disordering. During the disordering process, free volume was created, dissipating the externally applied strain energy and the rate of creation was found to converge to a saturated value. We evaluated the capability of energy absorption of amorphous alloys during homogeneous deformation using recent theories on the evolution of the structural state.

Keywords

References

  1. J. Y. Park, Y. Shibutani, Wakeda, and S. Ogata, Mater. Trans. 48, 1001 (2007) https://doi.org/10.2320/matertrans.48.1001
  2. A. S. Argon, Acta Metall. 27, 47 (1979) https://doi.org/10.1016/0001-6160(79)90055-5
  3. M. L. Falk, and J. S. Langer, Phys. Rev. E 57, 7192 (1998) https://doi.org/10.1103/PhysRevE.57.7192
  4. M. L. Falk, Phys. Rev. B 60, 7062 (1999) https://doi.org/10.1103/PhysRevB.60.7062
  5. C. A. Schuh, A. C. Lund, and T. G. Nieh, Acta Mater. 52, 5879 (2004) https://doi.org/10.1016/j.actamat.2004.09.005
  6. Y. Shi, M. B. Katz, H. Li, and M. L. Falk, Phys. Rev. Lett. 98, 185505 (2007) https://doi.org/10.1103/PhysRevLett.98.185505
  7. S. J. Lee, B. G. Yoo, J. I. Jang, and J. C. Lee, Met. Mater. Int. 14, 9 (2008) https://doi.org/10.3365/met.mat.2008.02.009
  8. S. C. Lee, C. M. Lee, J. W. Yang, and J. C. Lee, Scripta Mater. 58, 591 (2008) https://doi.org/10.1016/j.scriptamat.2007.11.036
  9. S. C. Lee, C. M. Lee, J. C. Lee, H. J. Kim, Y. Shibutani, E. Fleury, and M. L. Falk, Appl. Phys. Lett. 92, 151906 (2008) https://doi.org/10.1063/1.2908218
  10. S. C. Lee, C. M. Lee, J. W. Lee, and J. C. Lee, J. Kor. Inst. Met. & Mater. 45, 545 (2007)
  11. B. Yang, C. T. Liu, and T. G. Nieh, Appl. Phys. Lett. 88, 221911 (2006) https://doi.org/10.1063/1.2206099
  12. J. C. Lee, K. W. Park, K. H. Kim, E. Fleury, B. J. Lee, M. Wakeda, and Y. Shibutani, J. Mater. Res. 22, 3087 (2007) https://doi.org/10.1557/jmr.2007.0382
  13. M. Wakeda, Y. Shibutani, S. Ogata, and J. Y. Park. Appl. Phys. A 91, 281 (2008) https://doi.org/10.1007/s00339-008-4395-4
  14. K. W. Park, M. Wakeda, Y. Shibutani, and J. C. Lee, J. Kor. Inst. Met. & Mater. 45, 663 (2007)
  15. K. W. Park, M. Wakeda, Y. Shibutani, E. Fleury, and J. C. Lee, Met. Mater. Int. 14, 159 (2008) https://doi.org/10.3365/met.mat.2008.04.159
  16. A. Slipenyuk, and J. Eckert, Scripta Mater. 50, 39 (2004) https://doi.org/10.1016/j.scriptamat.2003.09.038
  17. A. V. D. Beukel, and J. Sietsma, Acta Mater. 38, 383 (1990) https://doi.org/10.1016/0956-7151(90)90142-4
  18. R. Bhowmick, R. Raghavan, K. Chattopadhyay, and U. Ramamurty, Acta Mater. 54, 4221 (2006) https://doi.org/10.1016/j.actamat.2006.05.011
  19. F. Spaepen, Acta Metall. 25, 407 (1977) https://doi.org/10.1016/0001-6160(77)90232-2
  20. M. L. Manning, J. S. Langer and J. M. Carlson, Phys. Rev. E 76, 056106 (2007) https://doi.org/10.1103/PhysRevE.76.056106
  21. M. Shimono, H. Onodera, Scripta Mater. 44, 1595 (2001) https://doi.org/10.1016/S1359-6462(01)00785-0