• Title/Summary/Keyword: Energy Integral

Search Result 577, Processing Time 0.034 seconds

Steady State Crack Propagation Behavior in a Piezoelectric Strip Bonded to Elastic Materials (탄성체에 접합된 압전 스트립에서의 균열 전파 거동)

  • Gwon, Sun-Man;Choe, Hyo-Seung;Lee, Gang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.283-290
    • /
    • 2002
  • In this paper, we consider the dynamic electromechanical behavior of an eccentric Yoffe permeable crack in a piezoelectric ceramic strip sandwiched between two elastic orthotropic materials under the combined anti-plane mechanical shear and in-plane electrical loadings. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. The initial crack propagation orientation for PZT-5H piezoceramics is predicted by maximum energy release rate criterion.

The Crack Problem for Functionally Graded Piezoelectric Ceramic Strip (기능 경사 압전 세라믹 스트립의 균열에 관한 연구)

  • 신정우;김성찬
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.37-42
    • /
    • 2002
  • We consider the problem of determining the singular stresses and electric fields in a functionally graded piezoelectric ceramic strip containing a Griffith eccentric crack under anti-plane shear loading with the theory of linear piezoelectricity. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate are obtained.

Dynamic analysis of a magneto-electro-elastic material with a semi-infinite mode-III crack under point impact loads

  • Feng, Wenjie;Liu, Jinxi
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.609-623
    • /
    • 2007
  • The problem of a semi-infinite magneto-electro-elastically impermeable mode-III crack in a magneto-electro-elastic material is considered under the action of impact loads. For the case when a pair of concentrated anti-plane shear impacts, electric displacement and magnetic induction impacts are exerted symmetrically on the upper and lower surfaces of the crack, the magneto-electro-elastic field ahead of the crack tip is determined in explicit form. The dynamic intensity factors and dynamic energy density factor are obtained. The method adopted is to reduce the mixed initial-boundary value problem, by using the Laplace and Fourier transforms, into three simultaneous dual integral equations, one of which is converted into an Abel's integral equation and the others into a singular integral equation with Cauchy kernel. Based on the obtained fundamental solutions of point impact loads, the solutions of two kinds of different loading cases are evaluated by integration. For some particular cases, the present results reduce to the previous results.

Reynolds Stress Transport in a Merged Jet Arising from Two Opposing urved Wall Jets (두 곡면벽제트로부터 형성된 합성제트에서의 레이놀즈응력 전달)

  • 류호선;박승오
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.416-425
    • /
    • 1993
  • To investigate the characteristics of the merged jet arising from the interaction of two opposing curved wall jets over a circular cylinder in still air, mean velocity, Reynolds stresses, triple moments and integral length scale were measured using hot-wire anenometry. The turbulent kinetic energy and shear stress budget were evaluated using the measured data. The variations of the Reynolds stresses, the triple moment and integral length scale are severe in the interaction region. The pressure diffusion terms are found to be very large when compared the other terms in the interaction region. The distributions of the Reynolds stress and the triple moment in the similar region are found to be similar to those of conventional plane jets.

The Study for Fracture Parameter J in Rubber-Cord Composites with a Penny-Shaped Crack on Cord-End (고무-코드 복합체 코드-끝 균열에 대한 파괴역학적 매개변수 J에 관한 연구)

  • Yang, Kyeong-Jin;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.304-308
    • /
    • 2000
  • In this work, an equation of J-integral for a penny-shaped crack at the end of the cord embedded in rubber matrix is proposed. The dimensional analysis is applied to derived to the equation of J-integral. We assume that the energy Parameter J is separated into the deformation and the geometry function, and which is proved using by separation parameter.

  • PDF

Crack Propagation Behavior in a Piezoelectric Strip Bonded to Elastic Materials (탄성체에 접합된 압전 스트립에서의 균열 전파 거동)

  • Kwon, Soon-Man;Choi, Hyo-Seung;Lee, Kang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.304-309
    • /
    • 2001
  • In this paper, we consider the dynamic electromechanical behavior of an eccentric Yoffe permeable crack in a piezoelectric ceramic strip sandwiched between two elastic materials under the combined anti-plane mechanical shear and in-plane electrical loadings. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. The initial crack propagation orientation for PZT-5H piezoceramics is predicted by maximum energy release rate criterion.

  • PDF

Dynamic Propagation of a Interface Crack in Functionally Graded Layers under Anti-plane Shear (면외전단하중이 작용하는 기능경사재료 접합면 균열의 동적전파에 관한 연구)

  • Shin, Jeong-Woo;Lee, Young-Shin;Kim, Sung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.459-464
    • /
    • 2010
  • The dynamic propagation of an interface crack between two dissimilar functionally graded layers under anti-plane shear is analyzed using the integral transform method. The properties of the functionally graded layers vary continuously along the thickness. A constant velocity Yoffe-type moving crack is considered. Fourier transform is used to reduce the problem to a dual integral equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented. Followings are helpful to increase of the resistance of the interface crack propagation of FGM: a) increase of the gradient of material properties; b) increase of the material properties from the interface to the upper and lower free surface; c) increase of the thickness of FGM layer. The DERR increases or decreases with increase of the crack moving velocity.

  • PDF

A Study on the Performance of the Boiling and Condensation Heat Transfer of Vertical Closed Two-Phase Thermosyphons with Low Integral-Fins (관 외벽에 낮은 핀을 가진 수직 열사이폰의 비등 및 응축열전달 성능에 관한 연구)

  • Cho, Dong-Hyun
    • Solar Energy
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 1999
  • An Experimental study on the boiling and condensation heat transfer performance of thermosyphons with low intergral-fins was performed to investigate its heat transfer characteristics. A plain thermo syphon having the same inner and outer diameter as the finned thermosyphons was also tested for comparison. Water and CFC-30 was used as working fluids. The experimental results have been assessed and compared with same existing theories. Good agreement with the theories of Imura and Nusselt was obtained. The vertical closed-type thermosyphons with low integral-fins gave significant increases in the overall heat transfer coefficient compared to plain thermosyphon. In addition, the overall heat transfer coefficients and the operating characteristics was obtained as a function vof operating temperature for the practical applications. Also, the closed two-phase thermosyphons with low integral-fins would be highly recommended to achieve some inexpensive and compact heat exchangers in the range of low temperatures.

  • PDF

A study on the Nonlinear Normal Mode Vibration Using Adelphic Integral

  • Huinam Rhee;Kim, Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1922-1927
    • /
    • 2003
  • Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6$\^$th/ order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhoff-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.

Cure Kinetics of Epoxy/Diamine System Modified with Malononitrile by Barrett Method and Integral Method (Malononitrile에 의해 개질된 Epoxy/Diamine계의 경화반응 속도론: Barrett Method와 Integral Method)

  • Cheon, In-Suk;Don, Yun-Seung;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.574-580
    • /
    • 1994
  • This study is about cure kinetics of DGEBA/MDA/MN(malononitrile) system by Barrett method and Integral method using DSC dynamic run. Curing behavior was shown through DSC and the heat change involved in a reaction could be measured directly with DSC. The kinetic parameters such as activation energy, pre-exponential factor and reaction order were given by Barrett method and Integral method obtained in an assumption that the area of DSC enthalpic analysis curve was propotional to the enthalpic change.

  • PDF