• Title/Summary/Keyword: Energy Elasticity

Search Result 280, Processing Time 0.025 seconds

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdalla, Waleed S.;Kabeel, Abdallah M.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.141-151
    • /
    • 2020
  • This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

An Analysis of Interfuel Substitution of Energy Demand in Korean Manufacturing (한국 제조업부문의 연료용 에너지원간의 대체성 분석)

  • Park, Changsuh;Na, In-Gang
    • Environmental and Resource Economics Review
    • /
    • v.13 no.4
    • /
    • pp.593-619
    • /
    • 2004
  • This study analyzes the interfuel substitution of energy demand in Korean manufacturing sector using static and dynamic linear logit models. For the period of 1981~2002, this study uses petroleum, electricity, natural gas and coal as energy sources. According to the empirical results, firstly, the own-price elasticity of coal has been increased steadily even though its elasticity is smallest compared with those of other energy sources. On the other hand, price elasticity of natural gas is largest, but its value has been decreased after 1997. Price elasticities of petroleum and electricity are very stable over the sample period. One of the main features in trends of interfuel substitution is as follows. Substitution effect of a change in price of natural gas on both petroleum and coal has been increased especially after 1997. The implication of the empirical results is summarized as follows: First, the fact of inelastic own-price elasticity of petroleum implies that the dependency of Korean manufacturing sector on petroleum and coal will be persistent even in a sharp fluctuation of petroleum price. Second, the effects of price increase in natural gas on demand for petroleum and coal are very significant. Thus, price decline of natural gas rather than price declines of coal and petroleum could be more effective as an energy price policy for the reduction of $CO_2$ emission. The assessment on this implication will remain for future researches.

  • PDF

A Compilation and Evaluation of Thermal and Mechanical Properties of Bentonite-based Buffer Materials for a High- level Waste Repository

  • Cho, Won-Jin;Lee, Jae-Owan;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.90-103
    • /
    • 2002
  • The thermal and mechanical properties of compacted bentonite and bentonite-sand mixture were collected from the literatures and compiled. The thermal conductivity of bentonite is found to increase almost linearly with increasing dry density and water content of the bentonite. The specific heat can also be expressed as a function of water ontent, and the coefficient of thermal expansion is almost independent on the dry density. The logarithm of unconfined compressive strength and Young’s modulus of elasticity increase linearly with increasing dry density, and in the case of constant dry density, it can be fitted to a second order polynomial of water content. Also the unconfined compressive strength and Young’s modulus of elasticity of the bentonite-sand mixture decreases with increasing sand content. The Poisson’s ratio remains constant at the dry density higher than 1.6 Mg/m$_3$, and the shear strength increases with increasing dry density.

Study of Skin Elasticity and Wrinkle Properties of Elderly Female according to Sasang Constitution-based Health State (고령자 여성의 체질건강수준에 따른 피부 탄성 및 주름 특성 연구)

  • Kim, Young-Min;Jung, Chang-Jin;Ku, Bon-Cho;Jeon, Young-Ju;Kim, Keun-Ho;Kim, Jong-Yeol;Kim, Jaeuk U.
    • Korean Journal of Oriental Medicine
    • /
    • v.18 no.3
    • /
    • pp.119-126
    • /
    • 2012
  • 1. Objectives Sasang constitutional medicine is unique in Korean traditional medicine. It diagnoses and treats patients based on his/her Sasang constitution (SC). Skin properties have been used as an effective diagnostic component in the classification of SC types in clinics. In this paper, we investigated the SC-based health relevance of skin elasticity and wrinkle properties. 2. Methods The skin elasticity and wrinkle of forearm and dorsal hand were measured in 299 elderly female subjects. To determine the subject's Sasang constitution, we adopted the classification results from a newly developed SC diagnostic tool. The health states of the subjects were scored by two Korean traditional medical doctors, by whom each subject was categorized either into the healthy state or the unhealthy state. 3. Results As a result, the elasticity hysteresis of forearm (E_HYS), the visco-elasticity (VE_MEAN), and the wrinkle frequency energy of backhand (W_HAND) showed significant differences between Taeum-in group and Soeum-in group. In case of the Soeum-in on unhealthy state, VE_MEAN was decreased significantly (p<.05). W_HAND and W_ARM_H of the healthy Taeum-in were less than those of the unhealthy Taem-in. 4. Conclusions In this study we showed that, for an elderly female population, skin elasticity and viscosity were significantly different not only between each SC type but also between healthy group and unhealthy group in each constitution. In particular, Soeum-in subjects were inferred to be superior in retaining skin softness when they were healthy, and Taeum-in subjects were easy to lose their firmness of skin surface when they became unhealthy.

Novel nonlinear stiffness parameters and constitutive curves for concrete

  • Al-Rousan, Rajai Z.;Alhassan, Mohammed A.;Hejazi, Moheldeen A.
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.539-550
    • /
    • 2018
  • Concrete is highly non-linear material which is originating from the transition zone in the form of micro-cracks, governs material response under various loadings. In this paper, the constitutive models published by many researchers have been used to generate novel stiffness parameters and constitutive curves for concrete. Following such linear material formulations, where the energy is conservative during the curvature, and a nonlinear contribution to the concrete has been made and investigated. In which, nonlinear concrete elastic modulus modeling has been developed that is capable-of representing concrete elasticity for grades ranging from 10 to 140 MPa. Thus, covering the grades range of concrete up to the ultra-high strength concrete, and replacing many concrete models that are valid for narrow ranges of concrete strength grades. This has been followed by the introduction of the nonlinear Hooke's law for the concrete material through the replacement of the Young constant modulus with the nonlinear modulus. In addition, the concept of concrete elasticity index (${\varphi}$) has been proposed and this factor has been introduced to account for the degradation of concrete stiffness in compression under increased loading as well as the multi-stages micro-cracking behavior of concrete under uniaxial compression. Finally, a sub-routine artificial neural network model has been developed to capture the concrete behavior that has been introduced to facilitate the prediction of concrete properties under increased loading.

Prediction of Mechanical Properties of Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 콘크리트의 재료역학적 성질의 예측)

  • 한상훈;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.173-178
    • /
    • 2000
  • New prediction model is investigated estimating splitting tensile strength and modulus of elasticity with curing temperature and aging. New prediction model is based on the model which was proposed to predict compressive strength, and splitting tensile strength and modulus of elasticity calculated by this model are compared with experimental values. New prediction model well estimated splittinge tensile strength and elastic modulus as well as compressive strength.

  • PDF

Topological Approach to the Rubber Elasticity of Polymer Networks

  • Son Jung Mo;Pak Hyungsuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.84-96
    • /
    • 1989
  • Applying the topological theory of rubber elasticity which was suggested by K. Iwata to the newly devised body-centered cubic lattice model, the authors calculated the values of four terms of the free energy to form polymer networks. Finding the projection matrix of the BCL model, and comparing this with the values of the simple cubic lattice (abbreviated to SCL hereafter) model of K. Iwata, the authors obtained the stress versus strain curves and found that the curves are in good agreement with the experimental results of poly(dimethyl siloxane) networks.

Large deflection analysis of orthotropic, elliptic membranes

  • Chucheepsakul, Somchai;Kaewunruen, Sakdirat;Suwanarat, Apiwat
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.625-638
    • /
    • 2009
  • Applications of membrane mechanisms are widely found in nano-devices and nano-sensor technologies nowadays. An alternative approach for large deflection analysis of the orthotropic, elliptic membranes - subject to gravitational, uniform pressures often found in nano-sensors - is described in this paper. The material properties of membranes are assumed to be orthogonally isotropic and linearly elastic, while the principal directions of elasticity are parallel to the coordinate axes. Formulating the potential energy functional of the orthotropic, elliptic membranes involves the strain energy that is attributed to inplane stress resultant and the potential energy due to applied pressures. In the solution method, Rayleigh-Ritz method can be used successfully to minimize the resulting total potential energy generated. The set of equilibrium equations was solved subsequently by Newton-Raphson. The unparalleled model formulation capable of analyzing the large deflections of both circular and elliptic membranes is verified by making numerical comparisons with existing results of circular membranes as well as finite element solutions. The results are found in excellent agreements at all cases. Then, the parametric investigations are given to delineate the impacts of the aspect ratios and orthotropic elasticity on large static tensions and deformations of the orthotropic, elliptic membranes.

Stability of perforated nanobeams incorporating surface energy effects

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.555-566
    • /
    • 2020
  • This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.