Browse > Article
http://dx.doi.org/10.12989/scs.2020.35.4.555

Stability of perforated nanobeams incorporating surface energy effects  

Almitani, Khalid H. (Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University)
Abdelrahman, Alaa A. (Department of Mechanical Design & Production, Faculty of Engineering, Zagazig University)
Eltaher, Mohamed A. (Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University)
Publication Information
Steel and Composite Structures / v.35, no.4, 2020 , pp. 555-566 More about this Journal
Abstract
This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.
Keywords
surface energy effects; perforated nanobeams; thin and thick beams; non-classical; buckling; analytical solution;
Citations & Related Records
Times Cited By KSCI : 23  (Citation Analysis)
연도 인용수 순위
1 Bourouina, H., Yahiaoui, R., Kerid, R., Ghoumid, K., Lajoie, I., Picaud, F. and Herlem, G. (2020), "The influence of hole networks on the adsorption-induced frequency shift of a perforated nanobeam using non-local elasticity theory", J. Phys. Chem. Solids, 136, 109201. https://doi.org/10.1016/j.jpcs.2019.109201.   DOI
2 Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S. R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.   DOI
3 De Pasquale, G., Veijola, T. and Soma, A. (2009), "Modelling and validation of air damping in perforated gold and silicon MEMS plates", Journal of Micromechanics and Microengineering, 20(1), 015010. ttps://doi.org/10.1088/0960-1317/20/1/015010   DOI
4 Ebrahimi, F., Daman, M. and Fardshad, R.E. (2017), "Surface effects on vibration and buckling behavior of embedded nanoarches", Struct Eng Mech, 64(1), 1-10. https://doi.org/10.12989/sem.2017.64.1.001.   DOI
5 Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013a), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.   DOI
6 Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E.I. (2013b), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002.   DOI
7 Pirmoradian, M., Torkan, E. and Toghraie, D. (2020b), "Study on size-dependent vibration and stability of DWCNTs subjected to moving nanoparticles and embedded on two-parameter foundations", Mech. Mater., 142, 103279. https://doi.org/10.1016/j.mechmat.2019.103279.   DOI
8 Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020b), "Mechanical Behaviors of Piezoelectric Nonlocal Nanobeam with Cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.   DOI
9 Emam, S.A., Eltaher, M.A., Khater, M.E. and Abdalla, W.S. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238.   DOI
10 Foroutan, S., Haghshenas, A., Hashemian, M., Eftekhari, S.A. and Toghraie, D, (2018), "Spatial buckling analysis of current-carrying nanowires in the presence of a longitudinal magnetic field accounting for both surface and nonlocal effects", Physica E, 97, 191-205. https://doi.org/10.1016/j.physe.2017.11.015.   DOI
11 Esmaeili, M. and Beni, T.Y. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. 10.22055/JACM.2019.27857.1439.
12 Fu, Y., Zhang, J. and Jiang, Y. (2010), "Influences of the surface energies on the nonlinear static and dynamic behaviors of nanobeams", Physica E: Low-dimensional Syst. Nanostruct., 42(9), 2268-2273. https://doi.org/10.1016/j.physe.2010.05.001.   DOI
13 Guha, K., Kumar, M., Agarwal, S. and Baishya, S. (2015), "A modified capacitance model of RF MEMS shunt switch incorporating fringing field effects of perforated beam", Solid-State Electronics, 114, 35-42. https://doi.org/10.1016/j.sse.2015.07.008.   DOI
14 Guha, K., Laskar, N.M., Gogoi, H.J., Borah, A.K., Baishnab, K.L. and Baishya, S. (2017), "Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect", Solid-State Electronics, 137, 85-94. https://doi.org/10.1016/j.sse.2017.08.007.   DOI
15 Sedighi, H.M. and Daneshmand, F. (2014), "Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term", J. Appl. Comput. Mech., 1(1), 1-9. 10.22055/jacm.2014.10545.
16 Rao, K.S., Sailaja, B.V.S., Sravani, K.G., Vineetha, K.V., Kumar, P.A., Prathyusha, D. and Guha, K. (2019), "New Analytical Capacitance Modeling of the Perforated Switch Considering the Fringing Effect", IEEE Access, 7, 27026-27036. 10.1109/ACCESS.2018.2889724.   DOI
17 Rebeiz, G. M. (2004). RF MEMS: theory, design, and technology. John Wiley & Sons.
18 Saffari, S., Hashemian, M. and Toghraie, D. (2017), "Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects", Physica B: Condensed Matter, 520, 97-105. https://doi.org/10.1016/j.physb.2017.06.029.   DOI
19 Sedighi, H.M. and Bozorgmehri, A. (2016), "Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory", Acta Mechanica, 227(6), 1575-1591. https://doi.org/10.1007/s00707-016-1562-0.   DOI
20 Shen, J.P., Li, C., Fan, X.L. and Jung, C.M. (2017), "Dynamics of silicon nanobeams with axial motion subjected to transverse and longitudinal loads considering nonlocal and surface effects", Smart Struct. Syst., 19(1), 105-113. https://doi.org/10.12989/sss.2017.19.1.105.   DOI
21 Eltaher, M.A., Khairy, A., Sadoun, A.M. and, F.A. (2014a), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072.   DOI
22 Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A. (2014b), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Comput., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076   DOI
23 Hashemian, M., Vaez, A.H. and Toghraie, D. (2019b), "Investigation of viscous fluid flow and dynamic stability of CNTs subjected to axial harmonic load coupled using Bolotin's method", Int. J. Numer. Method. Heat Fluid Fl., https://doi.org/10.1108/HFF-12-2018-0739.
24 Gurtin, M.E. and Murdoch, A. I. (1975), "A continuum theory of elastic material surfaces", Archive for Rational Mechanics and Analysis, 57(4), 291-323.   DOI
25 Hadipeykani, M., Aghadavoudi, F. and Toghraie, D. (2020), "A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study", Physica A: Statistical Mechanics and its Applications, 123995. https://doi.org/10.1016/j.physa.2019.123995
26 Hashemian, M., Foroutan, S. and Toghraie, D. (2019a), "Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects", Mechanics of Materials, 139, 103209. https://doi.org/10.1016/j.mechmat.2019.103209.   DOI
27 Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.   DOI
28 Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green-Naghdi via nonlocal elasticity with surface energy effects", The European Physical J. Plus, 135(1), 1-20. https://doi.org/10.1140/epjp/s13360-019-00037-8.   DOI
29 Jena, S.K., Chakraverty, S., Malikan, M. and Tornabene, F. (2019), "Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory", Mechanics Based Design of Structures and Machines, 1-15. https://doi.org/10.1080/15397734.2019.1698437.
30 Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016a), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.   DOI
31 Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016b), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51. https://doi.org/10.12989/anr.2016.4.1.051.   DOI
32 Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018a), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst/Technologies, 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3.
33 Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018b), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsys. Technologies, 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.   DOI
34 Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136.   DOI
35 Eltaher, M.A. and Mohamed N.A., (2020), "Vibration of Nonlocal Perforated Nanobeams under General Boundary Conditions", Smart Struct. Syst., 25(4). 501-514. https://doi.org/10.12989/sss.2020.25.4.501.
36 Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020a), "Static stability of a unified composite beams under varying axial loads", Thin-Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.   DOI
37 Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress-based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
38 Wang, L. (2012), "Surface effect on buckling configuration of nanobeams containing internal flowing fluid: A nonlinear analysis", Physica E: Low-dimensional Systems and Nanostructures, 44(4), 808-812. https://doi.org/10.1016/j.physe.2011.12.006.   DOI
39 Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14(6), 431-440.   DOI
40 Yousefzadeh, S., Akbari, A., Najafi, M., Akbari, O.A. and Toghraie, D. (2019), "Analysis of buckling of a multi-layered nanocomposite rectangular plate reinforced by single-walled carbon nanotubes on elastic medium considering nonlocal theory of Eringen and variational approach", Indian J. Physics, 1-15. https://doi.org/10.1007/s12648-019-01546-z.
41 Mercan, K. and Civalek, O. (2017), "Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ", Compos. Part B: Eng., 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067.   DOI
42 Mirkalantari, S.A., Hashemian, M., Eftekhari, S.A. and Toghraie, D. (2017), "Pull-in instability analysis of rectangular nanoplate based on strain gradient theory considering surface stress effects", Physica B: Condensed Matter, 519, 1-14. https://doi.org/10.1016/j.physb.2017.05.028   DOI
43 Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.   DOI
44 Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy equivalent mode", Engineering with Computer,1-14. https://doi.org/10.1007/s00366-020-00976-2.
45 Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018), "Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory", Steel Compos. Struct., 26(4), 513-531. https://doi.org/10.12989/scs.2018.26.4.513.   DOI
46 Oveissi, S., Toghraie, D. and Eftekhari, S.A. (2016b), "Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid", Physica E, 83, 275-283. https://doi.org/10.1016/j.physe.2016.05.004.   DOI
47 Ouakad, H.M., Sedighi, H.M. and Younis, M.I. (2017), "One-to-one and three-to-one internal resonances in MEMS shallow arches", J. Comput. Nonlinear Dynam., 12(5), 051025. https://doi.org/10.1115/1.4036815.   DOI
48 Oveissi, S., Nahvi, H., and Toghraie, D. (2015), "Axial wave propagation analysis in fixed and dynamic of carbon nanotubes conveying fluid", Solid Mech. Eng., 8(2), 108-115.
49 Oveissi, S., Eftekhari, S.A., & Toghraie, D. (2016a), "Longitudinal vibration and instabilities of carbon nanotubes conveying fluid considering size effects of nanoflow and nanostructure", Physica E, 83, 164-173. https://doi.org/10.1016/j.physe.2016.05.010   DOI
50 Oveissi, S., Toghraie, D.S. and Eftekhari, S.A. (2017), "Analysis of transverse vibrational response and instabilities of axially moving CNT conveying fluid", Int. J. Fluid Mech. Res., 44(2). DOI: 10.1615/InterJFluidMechRes.2017016740.
51 Oveissi, S., Toghraie, D.S. and Eftekhari, S.A. (2018), "Investigation on the effect of axially moving carbon nanotube, nanoflow, and Knudsen number on the vibrational behavior of the system", Int. J. Fluid Mech. Res., 45(2). 10.1615/InterJFluidMechRes.2018021036.
52 Pirmoradian, M., Torkan, E., Abdali, N., Hashemian, M. and Toghraie, D. (2020), "Thermo-mechanical stability of single-layered graphene sheets embedded in an elastic medium under action of a moving nanoparticle", Mech. Mater., 141, 103248. https://doi.org/10.1016/j.mechmat.2019.103248.   DOI
53 Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.   DOI
54 Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.   DOI
55 Almitani, K.H. (2018), "Buckling behaviors of symmetric and antisymmetric functionally graded beams", J. Appl. Comput. Mech., 4(2), 115-124. 10.22055/JACM.2017.23040.1147.
56 Ansari, R, and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49(11), 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007   DOI
57 Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A. M. and Hendi, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. DOI: https://doi.org/10.12989/scs.2019.31.5.489.   DOI
58 Barati, M.R. and Zenkour, A.M. (2019), "Thermal post-buckling analysis of closed circuit flexoelectric nanobeams with surface effects and geometrical imperfection", Mech. Adv. Mater. Struct., 26(17), 1482-1490.https://doi.org/10.1080/15376494.2018.1432821   DOI
59 Bellifa, H., Benrahou, K. H., Bousahla, A. A., Tounsi, A., & Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695   DOI
60 Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457   DOI
61 Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuat. B: Chemical, 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085.   DOI
62 Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E: Low-dimensional Systems and Nanostructures, 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021.   DOI
63 Khabaz, M.K., Eftekhari, S.A., Hashemian, M. and Toghraie, D. (2020), "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories", Physica A: Statistical Mechanics and its Applications, 123998. https://doi.org/10.1016/j.physa.2019.123998.
64 Khater, M.E., Eltaher, M.A., Abdel-Rahman, E. and Yavuz, M. (2014), "Surface and thermal load effects on the buckling of curved nanowires", Eng. Sci. Technol., 17(4), 279-283. https://doi.org/10.1016/j.jestch.2014.07.003.
65 Bendali, A., Labedan, R., Domingue, F. and Nerguizian, V. (2006), "Holes effects on RF MEMS parallel membranes capacitors", Proceedings of the 2006 Canadian Conference on Electrical and Computer Engineering (pp. 2140-2143). IEEE. DOI: 10.1109/CCECE.2006.277600
66 Bourouina, H., Yahiaoui, R., Sahar, A. and Benamar, M.E.A. (2016), "Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads", Physica E, 75, 163-168. https://doi.org/10.1016/j.physe.2015.09.014   DOI
67 Lu, L., Guo, X. and Zhao, J. (2018), "On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy", Int. J. Eng. Sci., 124, 24-40. https://doi.org/10.1016/j.ijengsci.2017.11.020.   DOI
68 Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004.   DOI
69 Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E. and Meletis, E.I. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563. https://doi.org/10.1007/s12206-012-0871-z   DOI
70 Malikan, M. and Eremeyev, V.A. (2020), "Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method", Materials Research Express.