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followed by CH2C12 afforded unreacted a ,a-dibromo-p- 

xylene. Elution with a mixture of n-hexane and ethyl 

acetate(2:l, v/v, 85 mZ) gave an unknown compounddl mg). 

Elution with the same solvent mixture(l: 1, v/v, 60 mZ) gave 

졸3(112 mg, 0.15 mmoles, 2%); 】H NMR(CDC1J $ 4.45(s, 

4H), 4.64(s, 4H), 5.26(s, 4H, 2NCH0, 7.00-7.50(mt 18H,

H

ArH), 7.66-7.94(01, 2H, ); MS m/e(ReL int) 183(58.1,

+如厂〈0>-(汨2的，185(53.5, +CH2^O}CH2Br). Elution 

with the same solvent mixture (1:2, v/v, 100 mZ) gave 24 
(l,191mg, 2.36 mmoles, 35%): NMR(CDC13 + DMSO-d6, 

5：1, v/v) S 4.50(s, 4H, 2SCH,), 5.23(s, 4H, 2NCHa), 6.61

H H H H
(s, 4H,-S-C 宅〉C-S), 6.94(s, 4H, N-C厄〉C-N), 7.13-7.44 

HH

(m, 6H, ArH), 7.58-7.90(m, 2H, 2 汹由)；MS m/e 540 

(M)

Reaction of 22 with 2. Sodium naphthulenide (2) was 

added to a suspension of 22 (1,433 mg, 3.56 mmoles) in 30 ml 

of THF at room temperature under N2 atmosphere until 

green color of 2 persisted. The reaction mixture was quench­

ed with water, followed by the extraction with ethyl acetate. 

After the solvent was evaporated, the residue was 

chromatographed. Elution with chloroform(130 mZ) afforded 

a mixture of naphthalene and 1,2-di-p-tolylethane11 (228 mg, 

1.08 mm이es, 61%). Elution with acetone(80 mZ) gave 1(869 

mg, 5.79 mm이es, 81%).

Reaction of 24 with 2. As in the reaction of 22, 2 was 

added to a suspension of 24(965 mg, 1.91 mmoles) in 30 mZ 

of THF. The reaction mixture was worked up as in the pre­

vious reaction. Elution with M-hexane(150 mZ) gave a mixture 

of naphthalene and 1,2-di-p-tolyethane. Elution with a mix- 

ture(90 mZ) of w-hexane and ethyl acetate(3:l, v/v) gave 

l-(/>-tolylmethyl) benzimidazoline-2-thione(25, 155 mg, 0.61 

mmoles, 32%): mp 201-202 °C (ethyl acetate-n-hexane, 1:10, 

v/v);NMR(CDCl3-DMSO-d6t 3:1, v/v)驱.24(s, 3Hf Me), 

5.49(s, 2H, CH2), 6.88-7.34(m, 8H, ArH), 12.60(s, 1H, NH); 

MS mle 254(M*). Elution next with the same solvent mix- 

ture(2:l, v/v, 170 mZ) gave an unknown (157 m용) and 1(282 

mg, 1.88 mmoles, 49%).
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Topological Approach to the Rubber Elasticity of Polymer Networks

Jung Mo Son and Hyungsuk Pak *

Department of Chemistry, Seoul National University, Seoul 151-742. Received October 4f 1988

Applying the topological theory of rubber elasticity which was suggested by K. Iwata to the newly devised body-centered 

cubic lattice model, the authors calculated the values of four tenns of the free energy to form polymer networks. Finding the 

projection matrix of the BCL model, and comparing this with the values of the simple cubic lattice (abbreviated to SCL here­

after) model of K. Iwata, the authors obtained the stress versus strain curves and found that the curves are in good agreement 

with the experimental results of poly(dimethyl siloxane) networks.

Introduction ries. One is the phantom network theories (PNT)142 and the

other the topological ones (TNT)13"15. In the former, the 

Rubber elasticity theories are classified into two catego- stress of networks is regarded as coming from the entropic
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Origin
Figure 1. A diagram representing GLC's and position vectors p's 

and bond vectors b's in two loops a and & Qand R denotes momen­

tary variation fields of So and Sg, respectively. is a parameteric 

position vector determined by a parameter & which takes the varia­

tion field within the segment at any moment, the subscript k being a 

orfor loops.

forces acting between ends of cross-linked polymers 

(strands), while in the latter, it is regarded as coming from the 

topological forces among entwing strands. It is believed that 

both the entropic forces and the topological ones contribute 

to rubber elasticity. But it is yet in controversy which is the 

main factor of this phenomenon. To solve the problem, the 

two forces must be considered simultaneously on the same 

theoretical background. This approach has first been tried by 

Deam and Edwards.13

In the present work, the authors propose a newly devised 

model of which the junction points form a body-centered 

cubic lattice and four strands connected to a junction point 

make a tetrahedral arrangement (hereafter, we call it the 

BCL model). Applying the topological rubber elasticity the­

ory of K. Iwata16"18 to this BCL model of networks, the 

authors calculated the projection matrixwhich is the most 

important factor necessary to calculate the free energy of 

networks, and obtained the stress versus strain curve of poly 

(dimethyl siloxane).

Transformation Matrices

The important idea17 of a topological theory is that of the 

interaction among strands in the network. A word strand 

means a polymer chain which joins two neighboring junction 

points. A word junction point means the jointing part of 

strands in the networks.

In the TNT or PNT, polymers having elasticity are regar­

ded as composed of the network which consists of a great 

number of junction points and strands. In general lattice 

models, a fundamental unit, which describes the physical 

properties of the whole network system, is called a cell.

In the TNT, it is assumed that the network, is a set of re­

gular arrangement of cells. Three assumptions of the TNT 

are as follows:

(1) The network is composed of Nc identical cells, each of 

which consists of sufficiently large number of strands and 

junction points. Let TV丁be the number of total junction points 

of the network.

(2) The network is a set of cyclic arrangement of cells.

(3) Under a strain relative displacements of mass centers 

of cells are exactly affinelike.

It is necessary to introduce the conception of a GLC

Figure 2. Topological states and GLC's, i.e., 7抑's, for the ring 

polymers a and B. If = 0, then there is a repulsive force between 

loops, otherwise there is an attractive force.

(Gauss Linking Coefficient). Let's define Tas to be the GLC 

between loops a and B and 8曲 the GLC between strands a 

and b as follov/s:

件의*函%& ⑴

where 。百 is a position vector determined by a parameter Sk 

which takes the variation fi이d within the segment at any mo­

ment and pk = dpk/dSk, the subscript k being aorfi for loops 

and a or b for strands. The picture illustrating the meanings 

of Eqs. 1 and 2 is given in Figure 1. Here two pentagonal 

loops a and fi are shown. Loops a and /Sare composed of five 

segments respectively. Position vectors of segments in loops 

are represented as the ones joined directly from the origin of 

the network system to center points of segments. If we let ra 

and r^be the sets of position vectors of loops a and p, respec­

tively, we have

r°=研,rl K, r-\

严，勺. (3)

A bond vector b, which joins the center points of two neigh­

boring segment, is defined by

나⑷

'll丄j LiS oi bond vectors bQ and ba of loops and B are given 

by

ba=狀,bl bl 机,bV

矿=桝，或呢砍旎｝. (5)

In general, there are a great number of loop GLC's, such as 

Tit T* and etc. Let To and 0 be the sets of loop and strand 

GLC's, respectively. Let Tx be a subset which meets the con­

dition that all elements of To should be represented as linear 

combinations of elements of Now the transformation ma­

trices between the sets of loop and strand GLC's are given by

T. = 6C

TLRB 

Tl旺 

r=CB (6)

where To, Tlt and 6 are k0, and n2 dimensional row vec­

tors, respectively, and F is n2 x Mi dimensional matrix. nQ is 

the number of GLC's of nx that of GLC's of 丁］, and n2 

that of GLC's of 6. Let rbe any element of Tb r° the set of 

position vectors of junction points in the reference state, and 

r the set of those in any state. For a given state let F be the 

free energy of the system, T the topological distribution 
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function, and 卩(人) the v이ume under the macroscopic strain 

人，then the free enrgy T^A,r°)17 is given by

F(A, r°) =Z \~kT\n [ g; r)办《 缨(히,。) (7)

whereW(r|/) is the conditional distribution function given as 

a function of r when the position vectors are fixed at r°. The 

total free energy of the network F may be separated into four 

terms as follows:

F=I《 "-Eh鄭+瓦+孔 (8)

where F^ph is a term coming from the entropic force acting 

between ends of the strands, and F{] top is one coining from 

the topological interaction among the strands when all the 

junction points deform affin이y. Fx is a correction term due to 

nonaffine displacement of the junction points, and F2 is one 

due to the fluctuation of 8 ■ Transition matrices of Eq. 6 con­

tribute only to F2.

It is likely good to go on after considering the meanings of 

T“ . As shown in Figure 2, Tag has the only integer values. 

When Tm = 0 there is a repulsive force, while in case that 

T0 there is an attractive force between loops a and B.

A generalized inverse26 of any matrix A is defined by

出三 (9)

where A1, of course, is a transpose of A, and (4‘A)" is an in­

verse matrix of AfA. The projection matrices of r and Care 

given by, respectively,

I쟤느

(10)

According to proofs17 of matrix relationships,

Trr^TrC^n. (11)

whre 处 1 is the number of elements of Tx. In other words, nx is 

the number of effective loop pairs, r * should be found accor­

ding to the given model of the network as shown later more 

clearly.

Distribution Function and Free Energy

In the PNT or TNT, the free energy of networks is ob­

tained from the distribution functions of junction points and 

strands. The conditional distribution function 敏(rlr) is given 

by

广r+i/z 广 
"히〃=匕“ J^(t-er)n 3-gjh"出a

+ (Gp//4)2 -1/2 • exp ( -。；/2乩)〕{而 dt (12)

where 51 is a delta function. GP and Hp are given by, respec­

tively

GP(r) =v,2 7gp{r) (13)

Hp{r) =v/27hp{r) (14)

where 7 is a characteristic parameter for the given model, 

and v is the number of submolecules included in a strand. It 

is assumed that every strand has the same number of cub­

molecules, and that every submolecules has the same 

number of segments. In Eqs. 13 and 14, p stands for the bond 

pair of the strands a and b, and r is represented by

尸={3匕，九*} (15)

where ra and r'a are the position vectors of end points of the 

strand q, and rb and r'b are those of the strand b. Let the letter 

세 denote the bond pair of the submolecules % and bj and the 

letter共' that of 나】e submolecules a\ and 邮 When the vector r 

is fixed, let F麻이be the distribution function of single 

contact obtained when the bond pair 卩 is formed, and 

Pp人。u" that of double contact obtained when the bond 

pairs 卩 and are formed between two strands in a phantom 

network. Then 아le &仞 and 心') in Eqs. 13 and 14 are given 

by

gpS) '~2X^Pph (0^|r) (16)

知("广％，⑴〕r £ XPph 行)

where 釦(D is the value of the mean single contact probability 

and h仰)that of the mean double contact one between sub­

molecules in two strands.

The distribution functions F(r,r) and T(r|r°) can be ex­

pressed as

匸）=巳가（이,）
(17)

where P" is the distribution function of junction points in a 

phantom network. When the network is in the topological 

state rand occupies a volume I#人)whose shape is determin­

ed by a , its free energy is defined by

FQ, T)= ~kT In f (r, t) dr. (18)
Jvtn

Then the free energy averaged over 나】e set of r° is given by

F(人，)=事戶(人, ■(이,。). (19)

Detailed Form of the Free Energy

The derivative of the total free energy of the network F 

with respect to A can be given as follows17:

°F= 3风职,3F0,, OF、I BF2 m
aA 8A 8A 8A 9A 即)

쯔地实 (21)

쯔座一総〔(务专) 聲专注衍〕+集

.咎岳〕 ®

Tr«W*>«W*>) + -2<y* V*>
o A Z

(< W*>) ++ < v*v*> (<I俨〉)+ < 而〉

■ (<w*〉)+〕 (23)

業M知(驾)新*)+汐朝

gW屿噂、
(A；)5 A； J> (24)
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The above Eqs. 20 to 24 are main parts of the TNT. Now it is 

likely good to consider the physical meanings of all terms in 

Eqs. 20 to 24. The letter s of Eq. 21 stands for any strand in 

the network, and g is the mean squared end-to-end distance 

of the strand s in the phantom network. The position vectors 

of end points in the strand s are expressed as r； and rs. The 

symbol dot (.) denotes the first derivatives of given functions 

in regard to X, such as

In the above equations, the superscript o attached on the gp 
and hp represents that they are the values at r = r° and the su­

perscript * attached on the gp, hp, V, Wf and etc. denotes that 

they are the ones at r = / *r r* being the set of position vectors 

of junction points deformed affinelikely under the macros­

copic strain A. Also the gp and of course, are given by Eq. 

16. Note that the usage of the superscripts o's and *'s just 

defined will be fixed throughout this paper.

Now a new function U is defined by

(们分、* (26)

where © (0 /) is the distribution function expressed as vari­

ables of 8 and r. Letting Mobe the number of junction points 

in a cell, which is the fundamental unit of lattices, the new 

quantities V* and W* are defined by

时=京|_ (27)

헤

" = 미 f* (28)

where V* is an A/o dimensional super vector whose ith ele­

ment is V*, and IF* is an Mo x MQ super matrix whose i,j 이e- 

ment is W*, Recall that in a network is the number of ef­

fective loop pairs and that n2 is the one of effective strand 

pairs. r#, which is an n2 x n2 dimensional matrix, of Eq. 24 

is

r# = i-r+ (29)

where r # has been given in Eq. 10, and 1 is an n2 x n2 unit 

matrix.

To find the free energy of a network, we have only to cal­

culate terms of the right-hand side of Eqs. 22 to 24. The de­

tailed method16,17 to calculate the values of the 命 hp and etc. 

of Eq. 22 will be discussed in Section 5, and the detailed pro­

cess to calculate the values of the < /*>,

< W*>, and etc. of Eq. 23 will be stated in Section 6. By us­

ing the newly devised BCL model, the detailed method of cal­

culation of r# of Eq. 24 will be shown in Sections 7 and 8.

ffp and 婚 and Their Derivatives

Recall that the relationships and physical meanings of the 

g"), h^r}, %(G시尸), and Pp^Ou,Ou\r} have already been 

shown in Section 3. To calculate the gab(r) and h", it is 

necessary to know two contact probabilities, the Pp^Oaub) 

and Pp^Oaubv, Oau-bv\r) for the submolecular pairs (au,bv) and 

(au^bv1) when the terminal points of strands a and b are fixed 

at r = (raf r'a, rb> rj). In the absence of the excluded volume ef­

fect among the submolecules, the former is given by

PPh(Oaubv\ r) = (3/2/27clluuvvky/2 .

exp [-3 (血-材/如)/2尸〕 (30) 

where the kYl k2, and are expressed by

kx = / uu~\~ /vv

k2=rJu-\-ra/勿+ 乙//v 31)

奴=fa/u+^/u+ti/v+r^/v-(4- 4尸/R

-gf.

The latter having two cases according to conditions is repre­

sented by

Pph〈°Qubtn °应 btf | 尸)=

(9R2/，侦•，幻祯庆/厶城3 IIKII)”.

exp(-3 (&-KKK)/2尸〕 (32)

where one of the two cases included in Eq. 32 above has the 

conditions that h〉u‘ and z?〉伊 and that 아此 Klt K2t and K3 

are given by

K _ [ 1/五+1/矛"+1/厶"+]/厶疗—1/Au- 1/Av

1 - 1/Au- 1/Av 1//+1/〃' +1/血+1/厶疗，

rju' +rb/v\
(33)

Kf=1산I讥胡U -成호/矛+尺/疗’

一（43；） 허/，' + （九-才 2// 

and the other has 나le conditions that "〉z"and r<r'and that 

the K], K2, and K3 are given by

K = [ 1/저+1/厶化+1/而 一 1/Au- 1/Av
1〔 - 1/Au- 1/Av +1/矛+1/血+1/而

K疔 rjuf +%/歹 J

Kz= I瓦*RJd -Eg/矛+方/疗’

-S")財/+ (乙F)2// (34)

where vf is the number of submolecules in the strands, 

the u,u'tv, and v' are abbreviations of the au.au^bv, and 

bv\ P is the root mean squared end-to-end length of the 

submolecule, and u = y'-u, v'-v, Au = \u-u'\, and 厶^ = 

\v-vf\.

Considering Eq. 30, we know that the P麻。做由)has the 

form of the typical distribution function between submole­

cules in the strand옹 a and in a phantom network. Appli­

cation twice of Eq. 30 leads to the formulation of Pp^Oaubvt 

Qm扁/)• For this the forms of Pfh(Ombl„ Oau,bv.\r) are sepa- 

rated into two cases according to the relative positions of 

subm이ecules in strands and to the states of the distribution 

between strands. Both of them have, like thePph(Oaubl\r)f the 

forms of the typical distribution function of a phantom net­

work. By use of Eqs. 30 and 32, the gaf) and hab can be calcula­

ted.

The reduced distance d, which is a linear length joining 

straight two centers of strands a and b, is expressed by

如le+4 - nF 丨
(35)

2 b

where b in the denominator of the right-hand side denotes the
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Figure 3. A diagram representing the tetrahedral structure of the 

BCL model whose junction points are composed of body-centered 

cubic lattices. Small circles represent 바le junction points, straight 

lines the strands, and dotted lines 나}e edges of lattices.

length of a segment, and v the degree of polymerization of a 

strand, that is, the number of segments of which a strand 

consists.

From Eqs. 16, 30, and 32, we know that the £湖(尸)and 

hM can be expressed as functions of d, such as the g•沥(d) 

and hab(d). Derivatives of the g沥⑺，AJr), and etc. in regard 

to r are calculated by

(尸) 3乩」尸).匕乙，此)

Bra dd dra

하临后) 하Qd) _ 4《>、)

3& dd 

<V*> 9 < V* V* > t < W* > , and Their Derivatives

We see that the explanation of V and IF has already been 

given in Section 4. The averages of the V*r V*V*, and W* 

are all the functions of r*, r* (whose definition is given in 

Section 4) being expressed by

r^ = rTA (37)

where / is the position vector of junction points in the refer­

ence state, and A the diagonal matrix formed by three com­

ponents of a macroscopic strain A as follows:

Inj 佛)

From the cyclic nature of cells, the <K*>, <】/*【/*〉， 

and < W* >can be described by the character of strands and 

junction points in a cell. Their components are expressed by

<峪*〉= *丄+£<1比> (39)
p

< vr vr>=< 咯*〉< 〉+g〔< k* K*r >
-<**,><*%〉〕 P (40)

<必*〉=觸川 +2： <0為,〉 (41)
p

where 나le V；心 and W爲i, are components of the V* and W* 

in a phantom network, respectively. The V% and 0為〃,are 
given by ， '

= ~ 今杭 n - r*) (42)

y b i t

Hsu re 4. The definition of orientation of strands and general bond 

modes around •扇's(a) and Jev's(b).

必雨=[-(3/RZW for r=l (43)

(3/") for u

、 0 otherwise

where vz is the number of submolecules in a strand, and I2 is 

the mean squared end-to-end distance of a subm이ecule. w；is 

the set of all the neighboring junction points with which a 

strand combines, and the number of elements of nb For 

example, N】has the value of 6 for the SCL model, and 4 for 

the BCL.

< l성;〉, < VZ I匕办 >, and < Wp,l > in Eqs. 39 to 41 are 

given by

<VP*> =XP* (1-gp/hp) (gl/hp) +Cp*gp (44)

〈I為 為BUr (gW)

+ + G切j )g； +G；c爲'g財；(45)

< 必m +瓦丄(g； /h；)

+ (46)

where 나蛇 或 and 岭 are the values of the gp and hp, respec- 

tiv이y when r = r°. Terms appearing in the right-hand side of 

the above equations take the form of

&A ("广姒;)破

~ 3 /zp*/2

G3=/点/2婦

瓦丄=(g赢-妃；r - +心?1為)g"(安—心、)

-(g〈-相)(gJ —球)戒以/ (g； - V)

— 37zp*r /2 — gf^i g為—3/z^*/zp*' /2 (47)

=(如丄-) /M*概h离爲

where the g森 /zP*,母丄，and 克晶 are given by

g【=0/3 r(*) In g*

hZ= (a/a rf*) In 心

gjir =(a/3 rz*) (a/a r/) In g* (48)

^P*r= (d/d 建)(3/3 疽)In k*.

Calculations of the < Vf V^> + < > and < > are

carried out by differentiating the <IZ*VzT>and < J竹；〉in 

regard to A, respectively. By using Eqs. 23, 39, 40, and 41, 

we can calculate Fv By use of Eqs. 16, 30, and 32, we can ob- 

tain the value of F叩电 from Eq. 22. By reading coordinates of 

position vectors of junction points, we can compute FQJ}k 

readily from Eq. 21. Now it is the calculation of F2 from Eq. 

24 to be left to us. For this work we should find r #, which is 
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determined specifically according to any model given.

Thus, we will suggest the new model, that is, the BCL 

model, which is the first created by the authors, in Section 7, 

and originally give a series of equations due to the model. 

Furthermore in Section 8, we will show the detailed process 

for the calculation of the projection matrices of the new 

model.

BCL Model

The picture of the three dimensional structure of the BCL 

model is given in Figure 3, where solid lines denote strands 

and small circles represent junction points. Considering only 

the arrangement of junction points, we see that the three di­

mensional structure is a collection of typical body-centered 

cubic lattices. But the arrangement of strands around any 

junction point takes the form of a typical tetrahedral struc­

ture.
In the BCL mod이, junction points are classified into two 

categories according to the methods of their combination 

with neighboring strands. One is the set of junction points 

corresponding to the apexes of lattices, and the other to the 

body centers of lattices.

Let /,/s be junction points of the former and the lat­

ter. For either /,/s or J/s, two different spatial orientations 

per junction point can be allocated in the way of combination 

with four neighboring strands around a given junction point. 

The effects of these two arrangements, however, are essen­

tially identical in view of contribution to the free energy of 

the system, so it doesn't matter which of them is chosen in 

going on disscussing. A " in the central part of the system is 

usually selected as an origin of the coordinates. For conve- 

nience, letting the length of an edge of lattices be 2, we can 

describe readily the coordinates of every junction point as a 

set of three components having only values of integers. Char­

acteristic combination modes of strands around the general 

junction points J's and JJs are plotted in Figure 4, where 

the spatial orientations of strands, in addition to the coordina­

tes of junction points, are defined on the basis of a Jer.

Letting r bea position vector representing, independently 

of J(,t or % any junction point, three components of this and 

variation fields of components are given by, respectively,

1= 0 j, k)

i = -It + Z_ 1, I (49)

j = " + 1,…，/T/

k产 _ K, -K+l,…，K-1, K

where the IJf and K are all positive integers. Note that the 

components of every Jev all have values of even integers, and 

that those of every /枫 have only values of odd integers. As 

plotted in Figure 4(b), spatial orientations of all the strands in 

the system are reduced to only four. For convenience, let 

or 艮顷=X, Y,Z, and W) be the symbol denoting a strand. 

The four spatial orientations of strands in the system are de­

fined by

strand from Jevto Jod(i- lj+1,^+1)

= strand from Jev(ij,k) to "*3+1/-1*+1) (50)

Z4AA= strand from/申面,舫 to Jod{i+Vj+l,k- 1) 

strand from Jev(iJfk) to Jod(i~ 1J-l,k-1)

Figure 5. A diagram representing directions of rotation of loops 

and four hexagonal unit loops around a Jev. Small squares represent 

the and small triangles the Jjs.

where the picture for these orientations is shown in Figure 

4(b). Though the number of loops formed around a Jev is all 

12, these are reduced to only four unit loops, that is, 12 loops 

can be represented by the linear combination of 4 unit loops. 

In similarity to the case of strands, let ut or uijk (u =£ 辺,，， 

and 8) be the symbol denoting a loop. The four unit loops, 

which are all hexagonal types consisting of 6 strands, around 

a are expressed by

£ t谁=Xgk— 卩匕+2바厂丿如+2・忱+2+ 0匕+ 2待 +厂 匕化

T) Xi+2 ^t+2J-2k~ Yi+ 2jk-2 + 2jk- 2 ~ k

、广0以一匕- 2jk- 2 +乙—少一 2 — 0Z+小-2 +匕 + "2

a 나『=x好—Zl ”*+2+ 2Jk+ 2~ 2J~ 2J-2*_ 应仆

where the minus symbols attached to terms of the right-hand 

sides denote the inverse of orientation of given strands. 

Thus, the orientation of rotation of unit loops also is describ­

ed in Eq. 51. All the relationships for 4 unit loops stated up to 

now are shown apparently in Figure 5, where the symbols of 

cyclic arrows denote the orientation of rotation of loops, 

small squares represent "'s, and small triangles are 扁's.

The letters Xr Y,Z, and W denoted along loops represent 

the orientation of strands, defined by Eq. 50. In describing 

junction points of lattices, it is usually convenient to discuss 

the physical properties of the system by separating and 
Ljs respectively. Since the distinction of and 丿Js deri­

ves only from the description of the coordinates, the forma­

tion mode of 12 hexagonal loops around any junction point is 

exactly identical for either a or a After considering the 

system composed of only /Js, we can also apply the informa­

tion obtained above to the system of only//s. Thus, first we 

consider the system composed of only JeJs. We can see readi­

ly that the structure of lattices in this system is that of the 

SCL's.
Let i be the coordinate system of junction points, inclu­

ding all JJs and /너's, along the x- axis, then we have

I-2Q
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(52)

(53)

矿=-2Q, —2Q+2,…,2Q-2, 2Q (52)

q三矿2=_Q — Q+1,…，Q-VQ

where 사此 letters I and Q denote positive integers, and in 

particular, 7 is a positive even integer. In similarity to the 

#axis system, along the axes y and z the following relation­

ships are given by

J =2R

r三尹/2

K=2S 

s = k72

where J and r correspond to the y-axis, and K and s to 산蛇 

2-axis. Now expressing Eq. 51 as the newly reduced coor­

dinate system (g?,s), we obtain a series of equations given by

£ —Xqt厂 ^gr+is+ lX"/
】r«+i— y“s

1 Qrs —匕rs — *时]r- Js+Zq+ “j 1 $ — 丫时 ira-1

+x时 Ira- 1 —乙亦

§ grs —0幻■&_ 匕?-ira-i+Zq_1 -■ i

+ 匕f+lS-L Zqg

& ars—X”®—十 Wq- ir-is~ ir- is

^qrs-

Eq. 54 is not arithmetic expressions, but symbolic ones. In 

Section 8, Eq. 54 will be transformed into ari난imetic expres­

sions. Also Eq. 54 is indispensable expressions leading to cal­

culation of the projection matrix r#of the BCL model. Since 

all the loops in the system are formed by exactly alternate lin­

kings of 扇's andTJs, unit loops around any take the same 

linking form of strands as that of JJs given in Eq. 54.

Projection Matrix r*

Jqrs+\~Jqr-S 

a qrS+ 1 ― gr- S (55) 

UqTS+ \ — Uqr- S

L- rs,
—a q-R新 

UqR+is= Uq_ R$、

(56)

It is assumed that the network composed of lattices is 

cyclic in the direction of the axes x,y, and 瓦 respectively. For 

junction points, strands, and loops, respectively, it is assum­

ed that

/q+i rs~J-

G q+1 G - Qrs»

U_ w

where fs denote junction points, and <r's and Us represent 

strands and loops, respectively, All the coordinate systems 

used in this section are equal to those of Section 7. Let % 

and U序$ be expressed as the form of triple products, that is,

0 QT3= 0 q© r O’ s 

Uqr3=UqUrU3

where though single terms of the right-hand sides have no 

physical meanings, triple product terms, each of which is 

composed of three single terms, have the same physical 

meanings as terms given in the left-hand sides. As stated pre­

viously, a *s denote strands, and Us loops. Letting 吨and UL 

be all (2L + l)-dimensional row vectors, row vectors of 

strands and loops are expressed by

Xq= (XqXi …X—sXQ
XR= (XrXz…X—R+1X_r)

(57)

(58)

Sr = (BrSr-I …S—R+1&-R)

& s =(8 S& S-l***^-s) •

From Eqs. 56 and 57, a and U take the form of row vectors 

given by

a - (X YZ W)

U= (E 기 f &)

where the X,匕乙…,, and 8 are expressed by

X==Xq ® Xr ® Xs,

Z=Zq®Z/8)Zs,
(59)

Y=Yq^Yr^Ys 
W=WQ^V^®WS 

기 =W응5 s

8 v 8 q 8 q & s

버。symbol ® being a direct product between matrices. Let 

^4 be a (2L + l)-dimensional unit matrix given by

,1

1

1Ul

…1
I 1 J

and let DL be a (2L + l)-dimensional matrix defined by

Dl

1

-1 1

-1 1

-1 1

-1 1
-1 1丿

(62)

where all the blank parts in square brackets have the values 

of zero오, and such a usage will keep being used in expression 

of all the matrices appearing hereafter. Let a, br and c be ma­

trices given by

a三Uq函Dk函Ds 

b 三Dq®Ur®Ds 
(:三 Dq 区 Dr® Us

where a,bf and c are all [(2Q + 1)(2J? + 1)(25 + 1) x (2Q + 1) 

(27? 4- 1)(2S + l)]-dimensional matrices.

By use of Eqs. 60 to 62, Eq. 54 can be transformed from 

symbolic expressions into arithmetic ones. From the con­

sideration of the loop 句酒 formed at a •/纣0,小), 난】e [(2Q+1) 

(22?+1)(25+ l)]-dimensional row vector, which is the set of 

all the unit loops having the same modes as 膈 in the system, 

in Eq. 59 can be expressed by the linear combination of the 

X, Y,Z, and W as hallows:

E Qts —Xg+i+ 匕匕

+ ^K+irs+i-屁 r+ 1 s+ i (63)

= XgXrX「X"XrXs+匕匕I 匕

匕匕匕+ Wq+l WrW^-W. Wr+1 0爲

f——(XQq) ® (XJ4 ) ® (8)

+ ( 匕I시 ® ( 芷Qs)
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+ (%R)® (‘服(一公))® (电u$)

=-X(D必 U必Ds) + Y(Uq®Dr®Ds)
+ W(RX)(-公)®W. (64)

Substitution of Eq. 62 into Eq. 64 leads to

^ = -Xb+Ya- Wc. (65)

Similarly to Eq. 65, the following equations for 们,,and 8 are 

obtained by

7] = ~ Xa— Yb—Zc 

t = Yc-Zb-Wa 

8=Xc - Zcl Wb.

Rearrangement of Eqs. 65 and 66 leads to

- b -a 0 c、

_ a — b c 0
(抑少)=XYZW) n ,

0 - c - b - a

.-c 0 -a - b,

or

U=gB
where B is defined by

(66)

(67)

'~b -a 0
、 

c

a -b c 0
B=

0 -c —b -a

、—c 0 -a f (69)

From Eq. 67 or 68, we see that the matrix B, which has a 

[4(2Q +1)(27? + 1)(2S +l)x 4(2Q +1)(2/? +1)(25 +1)] dimen­

sion, is a transformation matrix transforming loops into a 

linear combination of strands.

We define £ and E to be

® a

E=U^U (70)

From Eq. 68 we obtain

E=£C (71)

where C is defined by

C 三 BEB. (72)

For a quick comparison with Eq. 70, it is advisable to 

transcribe Eq. 6 as follows:

TOC、 (6)

Sine은 E included all possible products of 사le type 匸冋, and 

£, all possible products of the type 气,，the E and £ are 

identified, respectively, to the To and e , and then Eq. 71 is 

reduced to the first equation of Eq. 6. Also it is apparent that 

C of Eq. 72 is equal to that of the first expression in Eq. 6.

Using the first equation of Eq. 11, we should find C*.

From the character of matrices17,

= (73)

Let Ml be an orthogonal matrix whose elements are defined 

by

V1/2L+1

〔五〕w =丿2/2乙+1 cos (2^ZZZ /2L+1)

、丿2/2L+1 sin (W"/2L+1)

for r =0

for r =1, •••, L

for Z' = — 1,…，—L.

And let be a diagonal matrix given by

r dL

奴一

厶 d-L+i 

d-L

where the "th diagonal element is 

dr =2 sin2 G//2L+1).

Dl is rearranged into

dl=mi alml.
Substitution of Eq. 77 into Eq. 62 leads to

B=I기 FP

where the F and P are given by 

(74)

(75)

(76)

(77)

(78)

(68)

F=

'-3 —a 0 7

a 7 0

0 -7 - B —a

\ -7 0 —a

'M

M

M

、 M

(79)

(80)

where elements of the right-hand sides take the form of

=dQ®UR^As

M= Mq® M 必 M$.

In above equations, a and yare all diagonal matrices be­

cause all these are given by direct products of diagonal matri- 

ce옹. For example, expressions of a and y are expressed, 

respectively, by

(2S+DI

a l(2«+ 1)(2S+ D- 11

B Q、L ^l(2«+l)(2S+l)l 

^l(2Q+l)(2S+l)-ll

、 /
_ ✓ 、

/ Q. K= 7|(2«+1)(2«+1)1

7l(2«+l)(2«+I)-ll

、… J (81)

where the detailed forms of elements in square brackets are 

given by

QWs= 4 sin，br〃2R+l) • sin'(兀s/2S+l) (82)

4si『bra/2Q+l) , sin，(”s/2S+l)

7ftr= 4sin2(^^/2Q+l) - sin2 (^r/22?+l).

Since P is the orthogonal matrix, we obtain

B#=bFP)fF#P (83)

where F* is the projection matrix of F. Since Fis a 4x4 

super matrix whose elements are all diagonal matrices of the 

same dimension, it can be transformed into the following
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Table 1. Values of (a()oo> ^orQ—R—S=16

(q,y,s)
(X,X)

3, o')

(W)(X,K) (X,Z) (X,W) (匕Z) (匕W)

(0,0,0) -0.2304 -0.2304 0.1625 0.1463 -0.2204 0.2481 0.6774

(0,0,1) 0.4310 0.1325 -0.2742 0.4310 0.0012 -0.0042 0.4310

(0,0,2) 0.0438 0.0382 -0.0273 -0.0547 0.0224 0.0394 -0.0273

(0,1,14) 0.0824 -0.0631 0.0431 -0.0228 0.0119 -0.2418 0.0012

(0,1,15) -0.0421 0.0339 0.0229 -0.0421 -0.0116 0.0175 0.0033

(0,1,16) -0.0327 -0.0533 0.0420 0.0668 0.0241 0.0082 0.0082

(1,0,0) 0.2104 0.0448 0.2174 0.0271 -0.0172 0.0004 -0.0172

(1,0,1) 0.0661 -0.0272 -0.0182 0.0664 0.0084 -0.0064 0.0213

(1,0,2) 0.0588 0.0171 -0.0174 0.0448 0.0669 -0.0081 -0.0174

(2.16,0) 0.0072 0.0041 0.0082 -0.0412 0.0014 0.0041 0.0017
(2,16,1) -0.0332 -0.0913 0.0172 -0.0027 0.0008 0.0172 0.0062

(2,16,2) 0.0994 0.0881 0.0851 0.0121 -0.0051 -0.0816 -0.0001

(8,8,8) 0.0082 0.0043 -0.0058 0.0013 0.0043 -0.0019 0.0094

(16,15,14) 0.0024 0.0012 0.0011 -0.0011 0.0010 0.0011 0.0004

(16,15,15) 0.0836 0.0811 -0.0810 -0.0014 0.0172 -0.0810 0.0043

(16,15,16) 0.0996 -0.0732 0.0120 0.0144 -0.0732 0.0182 0.1011

(16,16,14) -0.1014 0.0999 -0.0082 0.1014 -0.0795 0.0682 0.0541

(16,16,15) -0.0335 0.0114 0.0023 0.0249 0.0248 0.0413 -0.0311

(16,16,16) 0.0227 0.1624 0.1463 -0.1732 0.2432 0.2304 -0.0129

block matrix by changing orders of row and column vectors 

properly:

'厶

F= A'
(84)

务

where A =(qfr,s).

Thus, 

r//

F#= R 

(85)

(86)

where are projection matrices of 厶，丿，，…given by 

Eq. 86. After the matrices/丸…are calculated numerically 

for the large value of Q,R, and S, they can be transformed in­

to B* with use of Eq. 83.

As exposed in Eq. 69, since B# has highly symmetric 

structure, it is sufficient to find elements of B* only for the 

strand pair <r000 and a锅(a,a1 = X, YfZ, and W).

A number of elements of for Q = R 드 S 드 16 are given 

in Table 1. In Table 1, since the strand pairs (X,X),(匕〉), 

(Z,Z), and (W,W)a]l have the same values, they can be repre­

sented only as the (X,X). On the other hand, (X, Y) has the 

same value as (匕X); (X,Z) as (Z,X); (X, W) as (l匕X);…；and 

(Zt W) as (W,Z). As a result, totally 7 of independent pairs 

(<7,/)'s for any junction point are obtained.

To obtain F* with the aid of the first equation of Eq. 11, 

we have only to find C*. Any element of C* is given by direct 

products of two of 8#'s, Letting r 气(气爵*•顷碍十矿,碍棚，史)) 

be an element of the matrix T# for the pairs (%” °；的，)and

0q'l"r'"s"^ WE have

F*〔 (。”s, a、’ y )(兀:,，广矿，。缶厂矿，)〕 (87)

= B (<Tooo* 하 q'1 f-처 I&一 囲) •

k<7ooo« Oia"' - q''n时《IE'' -矿I /

with which all the Sher elements of r#are obtained.

Having calculated the projection matrix F# of the BCL 

model, we can calculate F2by using Eqs. 24 and 87. Thus we 

can compute completely the total free energy of the network 

through the process di오cussed up to now.

Application to the Sample PDMS

The process of formation of the sample PDMS(poly(di- 

methyl siloxane)) is as Allows;

CH3
n(CH3)2SiCl2+nH2O-^ —f-O-Si—^n-+2n HC1 (88) 

CH,

PDMS (Mw=74.0, b=5.7 A)

where Mw and b are the molecular weight and the length of a 

segment of the PDMS, respectively. Recall that as referred 

to earlier, a strand denotes a polymer chain which is fixed at 

any two of junction points. If we let v be the degree of poly­

merization, which corresponds to the number of segments in 

a strand, such polymers as polyisoprene, polystyrene, and 

PDMS have the values of about 30 to 300.17 It is assumed 

that the whole system of the PDMS is composed of the 

BCL's, A cell consists of 8 subcells, and the structure of a 

subcell is plotted in Figure 6. Thus a cell has 128 junction
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Figure 6. A diagram representing the structure of a subcell and the 

coordinates of its junction points. The size of a subcell, which is 

composed of 16 junction points and 32 strands, is (4J()X4^0)(4t/0). A 

cell is composed of 8 subcells. Thus a cell has 128 junction points 

and 256 strands.

points and 256 strands.

Now consider the relationship between cells and the 

whole lattice system. Letting l,m, and p be the sets of the 

coordinates of integers along the axes x,y, and z, respectively, 

we have

I = -8L, -8L+1, ■,,, -1, 0,1, 8L-2, 8L- 1

一8妍1,…，一 1,0,1, (89)

力= —8F, — 8P+1,…，一1,0,1,…,8户一 2, 8P-1

where the L,M, and Pare all positive integers, if we let C^be 

the number of cells, and N肋 that of junction points belong to 

apexes of lattices, a series of the following expressions are 

obtained by

Cn= (2L) (2M) (20 =8LMP

128 G = 1024 LMP (90)

Sn=2Nl2M8LMP
Mev=Mod=M/2 = 512 LMP

where is the sum of N/ev and NJod and S” is the number of 

strands. In an actual calculation, we take L = M = P= 4, and 

then l,m, and p have the variation fields of integers as

I ==-32, -31, •- •, 30, 31

m= —32, -31, •• •, 30, 31 (91)

p -= 一32, -31, •* •, 30, 31

where these variation fields are almost equal to those of 

Iwata17 for the SCL model. Alternatively, physical properties 

of the whole lattice system can be fully described only by the 

lattice size of such a extent. Though the size of the lattice 

system is increased more, all the calculated values of the in­

creased system are retained, if any, almost unchangeably. In 

the region of Eq. 91, CN has the value of 512, NQ that of 

65,536, and SN that of 131,072.

The value of yf, which is the term necessary in the cal­

culation of 나le g/r) and hp(r) given by Eq. 16, is fixed at 10, 

which equals that of Iwata17 for the SCL model. Since the 

more increased the value of v' is the more delayed the time 

required in the calculation of the computer is at the fourth

Figure 7. The length relationship of strands, which is in the stan­

dard configuration, of the pressed spring structures combined with 

four junction points in a lattice of the BCL system.

power of it seems that the value of 10 for ' is the upper 

limit of the computer used, and that the value gives enough 

accuracy in the calculation of the free energy of the network.

Results and Discussion

The whole three dimensional form of the BCL model is 

shown in Figure 3. Only one of their lattices is plotted in 

Figure 7. At this stage it is necessary to introduce the con­

cept of the standard configuration. As shown in Figure 7, the 

standard configuration denotes the form of arrangement in 

which all the strands are arranged linearly with all the 

strands pressed tightly in the form of springs. In the calcula­

tion of projection matrices of Section 8, the standard configu­

ration of lattices has been taken as the reference state of the 

system. Now we introduce a parameter 6 related to the stan­

dard configuration.

As shown in Figure 7, letting 2dQ be the length of an edge 

of the lattice, the length of a strand must be 丿2% in the stan­

dard configuration. Since the value of dQ is the linear 

length of a strand in the state pressed tightly in the form of 

springs, if the pressed state of a strand is released, that is, if a 

strand extends in random state, the actual length of a strand 

will become longer.

In the state of the phantom network, the distance from 

the center to an apex in a lattice corresponds to the root 

mean squared end-to-end length, that is,厂j b, of a strand. 

Recall that the definition of b and v has already been stated in 

Section 9. Now the definition of 5 is given by the ratio of the 

end-to-end distance of a strand in the standard configuration 

versus that of a strand in the phantom network, that is,

宀" (92)

The density of strands of an unit lattice Ce and the reduced 

distance 6 are expressed by

(93)

①=(/3/2) • C：'八•广/' • b-'

=6.834XW8Ce-l/3 - - b'x (94)

where NA is the Avogadro's number. The coefficient 6.834 x 

10" of Eq. 94 is obtained by allocating values of 74.0 to Mw. 

In Eq. 94, Ce is represented as the unit of g/cm3, and b as that 

of cm.

Typical elastic polymers, such as polyisoprene, polys-



94 Bull. Korean Chem. Soc., Vol. 10, No. 1, 1989 Jung Mo Son and Hyungsuk Pak

Figure 8. The g紳 and 似d) as functions of d, which is a distance 

between the centers of the strands, for the BCL model. Solid lines 

represent curves obtained when the root mean squared end-to-end 

distance of a strand is -b, and dashed lines denote curves ob­

tained when that of a strand is J了b, where v is the degree of poly­

merization and b the length of a segment in the PDMS.

Figure 9. The g紳 and as functions of d for 바le SCL model.

The notations are the same as those of Figure 8.

tyrene, PDMS, and etc. whose v values are given as 30 to 

300, have the & values of 0.5 to 0.8. The functions g*) and 

given in Eq. 16 can be easily transformed into the func­

tions gf© and 噂d), d being given by Eq. 35. The functions 

and are plotted according to the BCL model in 

Figure 8, and according to the SCL model in Figure 9. In 

Figures 8 and 9, solid lines represent curves obtained when 

the root mean squared end-to-end distance of a strand is 0.5 

and dashed lines denote curves obtained when that of a 

strand is In Figures 8 and 9, the value of h^d) is greater

than that of g紳 because the double contact probability is 

greater than the single contact one due to the character 

resulting from the relatively long length of a strand. As the 

value of d is increased, the values of g紳 and h^d) become 

smaller, for the increase of the reduced distance d decreases 

the contact probability between two strands.

Also according to the relative ratio of occupation of junc­

tion points per strand, the height of curves in the BCL model 

is higher than that of curves in the SCL model. From the 

character of distribution functions in the phantom network, 

we can see that the general shape of curves is similar in two 

models. For the simple deformation considered here, we 

have

人* =人丫 =疽" (95)
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즈
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Figure 10. The curves representing the total free energy of 나le net­

work 천nd the four energy terms of which the total free energy is 

composed for the BCL model.
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F|Sure 11 • The curves representing the total free energy of the net- 

work and 바蛇 four energy terms of which the total free energy is 

composed for the SCL model.
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A^ = A.

Similarly to 바le SCL model, in the calculation of the < I저〉, 

< V* V*>, and < the contribution of strand pairs in­

ceded in 나le right-hand sides of Eqs. 39 to 41 satisfies that

d=(辺,妇-十 1 (35)
2 b

for A 1

for A < 1

dl+dl+d{/Z<[ 5

1 for A 1
〔1. 5 for A< 1

。卫「IO-' for A> 
赢나、10-9 for A< 1

(96)

(97)

(98)
1

where the weighted value Z in the z-axis is given to consider 

this unbalanced effect of the strain acting only along the 

x-axis. Since the value of gab is closely influenced by that of x 

before and behind 1, the weighted value Z and g%，are chang­

ed at A = 1.

In Figures 10 and 11, F and four components of that are 

plotted according to the BCL model and the SCL model, res­

pectively. The contribution of F2 to F is greater in the BCL 

mod이 of Figure 10 than in 한le SCL model of Figure 11. It 

seems that such a phenomenon results from the fact that the
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Figure 14. The curves representing the relationship of the stress 

versus strain on the PDMS sample. Here the curve of the BCL

(zw
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즈
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to the parameter ①for the BCL model.

to the parameter 6 for the SCL model.

model is compared with that of the statistical entanglement model of 

P. J. Flory, with that of the topological SCL model of K. Iwata, and 

with the experimental data depicted by small circles.

contribution of junction points per strand is greater in the 

BCL model 나011 in the SCL model. Figures 10 and 11 show 

that the main contribution to F is F0itop.

The changing modes of free energy curves along the val­

ues of 8 are 아】own in Figures 12 and 13, where the more de­

creased the degree of polymerization is, the more increased 

the value of Sis because that as the values of v are increas은d， 

the contact probabilities of strands are increased, and then 

contribution to also becomes more increased. As the values 

of 6 are decreased, the peaks of the energy curves are moved 

to the left of the x-axis. It seems that the reason why such a 

phenomenon arises is due to the fact that 버e increase of v 

lets the interaction between strands be influenced sensitively 

by the values of A after and behind 1.

With the experimental results20 represented by small cir­

cles, the topological calculated curves, in the BCL model and 

in the SCL model, and the statistically calculated curve of 

Flory19'23-25 are plotted in Figure 14. In the statistical entan­

glement model, which has two parameters19 = 10 and f = 

0.05, of Flory, a departure from the Mooney-Rivlin form for 

the stress versus strain curve h저s been explained a동 the con­

tribution of constraint energies restricting movement of junc­

tion points. On the other hand, in the topological BCL model, 

which has only one parameter S = 0.62, of the au아i°is，a de­

parture from the Mooney-Rivlin form for the stress versus 

strain curve can be explained as the topological interaction 

between strands in the network. Thus it can be stated that 

the topological interaction in the BCL model corresponds to 

the constraint energy in the statistical entanglement model.

For the statistical model though the general explanation on 

the experimental data has been successful, since topological 

effects of junction points and strands in the system have not 

been considered, and since individual contributions of junc­

tion points and strands to the total energy have not been 

stated in detail, a theoretical reformation for this model may 

be indispensable. On the other hand, for the topological 

model, since the results calculated from this topological 

model also have been in good agreement with the experimen­

tal data for the PDMS, and since the deficiency in the model 

of Flory has been completed almost entirely, it is regarded, in 

view of the theoretical background, that the topological BCL 

model is better than the statistical entanglement model.

From the results of two models above and in the depar­

ture of the topological SCL model from the experimental 

data, we can assert that the PDMS used as a sample" ha옹 the 

tetrahedral structure of strands around junction points.

Finally, the authors would like to point out that signifi­

cance for the application of the topological BCL model to the 

PDMS can be found in the fact that a great number of pa­

pers19,21'25 have been published by regarding the experimen­

tal data of the PDMS20 as the standard values of polymer 

experiments.
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Isotope Selectivity in the CO2 Laser Induced Decomposition of 
Trichloroethylene-H and Trichloroethylene-D
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農뜂囂負囂e籍짱囂第쯔"n o^chloroethylene-HCTCE-H) and trichloroethylene-D(TCE-D) was studied by us- 

爲q器謚驾MH編認舞*噩

C12C = CHC1 쁘四 pressure > 或 = CC1 + HC1

low pressure ▼.스 스
_ ----------- - > HC — CC1 + 2C1*(C19)
明鷲辭;TCE'1? and TCE'D mixtures with 10P(20) laser line showed that optimum conditions of large isotope selec- 

辭? were the low system pressures and high laser powers. The experimentally observed dependence of thebranching ratios 

energy^Zd 뿌驚囂謚 (震臨嚮 曇啊 coefficients were Quantitative^ explained by using the modified

Introduction

四 recent years the process of unimolecular dissociation 

by intense infrared radiation has been the subject of exten- 

sive studies. The initial impetus came from the very obvious 

practicality of selective multiphoton decomposition1. It is well 

understood that the IR selective nature can be effectively us- 

ed in the isotope separation2, and selective dissociation-eli- 

mmation of unwanted impurities3. There have been many 

theoretical4 and experimental papers dealing with selective 

multiphoton decomposition of various isotopes.

There are several approaches to LIS (Laser Isotope Sepa­

ration), all of which r이y on one common phenomena, the so- 

called isotope shift , which theoretically makes possible the 

selective excitation. In practice, the separation is seldom 

achieved because of thermal collisions between molecules, 

becaus은 of the Doppler effect on the laser wavelengths, and 

Realise of anharmonicity, etc. When the absorption wave- 

lengths of two isotopes are far apart, it is relativ이y easy to 

find and tune a laser to resonate at the absorption wave- 

知gth of one isotope, thus pumping energy into the selected 

isotope having no effect on unwanted isotope. For laser ex- 

理tion to remain selective, there must be a minimization of 

collisional exchange of vibrational energy between the ex- 

cited and unexcited isotope species.

During the last one and a half decade, many works on 

deuterium isotope separation have been reported. Typical 

叫：띄屁 used for deuterium isotope separation were for­

maldehyde5, freon 1236, and fluoromethanes7. Other ex- 

默l《s of laser isotope separation includes isotopes of boron 

辭以' 였5쓰 ©讥 CF3COCF3)siliconCSiF^, sulfurfSFg), 

chlonne(CF2Cl2) seleniumlSeFJ, molybdeniunKMoFJ, Os- 

mium(?s(勺 and 마anium(UF6, UfOCH^ where the precur- 

sor molecules are indicated in the parentheses.

,,The ?RMPD (Infrared Multiphoton Dissociation) of tri- 

chl?roethylene-버 (TCE-H) was previously investigated in 

molecular beam8 and in static cell9. Lee and coworkers8 ob- 

served that C-Cl bond fission, C2HC13 - -C2HC1 + C1-, was a 

籍?꼄显 dissociation channel in their molecular beam- 

1RMPD system. In contrast to this Steinfeld and coworkers9 

看짬%囱 that tr>chloroethylene underwent HC1 elimination,

의3 f HC1 + C2C12, as the mjaor reaction path at 10 torr 

:CE pressure m a static cell. Choo and coworkers10 resolved 

the ab°ve apparent discrepancy by a detailed study on the


