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followed by CH,Cl, afforded unreacted a ,a’-dibromo-p-
xylene. Elution with a mixture of #-hexane and ethyl
acetate(2:1, v/v, 85 m{) gave an unknown compound(11 mg),
Elution with the same solvent mixture(1:1, v/v, 60 mf) gave
23(112 mg, 0.15 mmoles, 2%); 'H NMR(CDCl) & 4.45(s,
4H), 4.64(s, 4H), 5.26(s, 4H, 2NCH,), 7.00-7.50(m, 18H,

H
ArH), 7.66-7.94(m, 2H. =N© }; MS m/e(Rel. int) 183(58.1,

*CH,~0)~CH,Br), 185(53.5, *CH,{O)CH,Br). Elution
with the same solvent mixture (1:2, v/v, 100 m/) gave 24
(1,191mg, 2.36 mmoles, 35%): 'H NMR(CDCI, + DMSO-d,,
5:1, viv) & 4.50(s, 4H, 25CH.), 5.23(1_81, 4H, 2NCH,), 6.61

H H H
(s, 4H.-8C @-C-S), 6.94(s, 4H, N-C@- C-N). 7.13-7.44
H H 4 H

H
(m, 6H, ArH), 7.58-7.90 (m, 2H. 2 :N© ), MS mle 540
(M*).

Reaction of 22 with 2. Sodium naphthalenide (2) was
added to a suspension of 22 (1,433 mg, 3.56 mmoles) in 30 m/
of THF at room temperature under N, atmosphere until
green color of 2 persisted. The reaction mixture was quench-
ed with water, followed by the extraction with ethyl acetate.
After the solvent was evaporated, the residue was
chromatographed. Elution with chloroform(130 m) afforded
a mixture of naphthalene and 1,2-di-p-tolylethane!! (228 mg,
1.08 mmoles, 61%). Elution with acetone(80 mi) gave 1(869
mg, 5.79 mmoles, 81%).

Reaction of 24 with 2. As in the reaction of 22, 2 was
added to a suspension of 24(965 mg, 1.91 mmoles) in 30 m!/
of THF. The reaction mixture was worked up as in the pre-
vious reaction. Elution with »#-hexane{150 m{) gave a mixture
of naphthalene and 1,2-di-p-tolyethane, Elution with a mix-
ture(90 m{) of n-hexane and ethyl acetate{3:1, v/v) gave
1-(p-tolylmethyl) benzimidazoline-2-thione(25, 155 mg, 0.61
mmoles, 32%): mp 201-202 °C (ethyl acetate-n-hexane, 1:10,
v/v); '"H NMR(CDCl,-DMSO-d, 3:1, v/v) &2.24(s, 3H, Me),
5.4%s, 2H, CH,), 6.88-7.34(m, 8H, ArH), 12.60(s, 1H, NH);
MS myse 254(M*). Elution next with the same solvent mix-
ture(2:1, v/v, 170 m)) gave an unknown (157 mg) and 1(282
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mg, 1.88 mmoles, 49%).
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Topological Approach to the Rubber Elasticity of Polymer Networks

Jung Mo Son and Hyungsuk Pak’

Department of Chemisiry, Seoul National Universitly, Seoul 151-742. Received October 4, 1988

Applying the topological theory of rubber elasticity which was suggested by K. Iwata to the newly devised body-centered
cubic lattice model, the authors calculated the values of four terms of the free energy to form polymer networks. Finding the
projection matrix of the BCL model, and comparing this with the values of the simple cubic lattice (abbreviated to SCL here-
after) model of K. Iwata, the authors obtained the stress versus strain curves and found that the curves are in good agreement
with the experimental results of poly(dimethyl siloxane) networks.

Introduction

Rubber elasticity theories are classified into two catego-

ries. One is the phantom network theories (PNT)"'? and the
other the topological ones (TNT)¥'. In the former, the
stress of networks is regarded as coming from the entropic
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Origin

Figure 1. A diagram representing GLC’s and position vectors p's
and bond vectors b's in two loops g and £. @ and R denotes momen-
tary variation fields of S. and Sz, respectively. 2, is a parameteric
position vector determined by a parameter S, which takes the varia-
tion field within the segment at any moment, the subscript % being ¢
or Afor loops.

forces acting between ends of cross-linked polymers
(strands), while in the latter, it is regarded as coming from the
topological forces among entwing strands. It is believed that
both the entropic forces and the topological ones contribute
to rubber elasticity. But it is yet in controversy which is the
main factor of this phenomenon. To solve the problem, the
two forces must be considered simultaneously on the same
theoretical background. This approach has first been tried by
Deam and Edwards.”

In the present work, the authors propose a newly devised
model of which the junction points form a body-centered
cubic lattice and four strands connected to a junction point
make a tetrahedral arrangement (hereafter, we call it the
BCL model). Applying the topological rubber elasticity the-
ory of K. Iwata'®'® to this BCL model of networks, the
authors calculated the projection matrix I™ #which is the most
important factor necessary to calculate the free energy of
networks, and obtained the stress versus strain curve of poly
(dimethyl sitoxane).

Transformation Matrices

The important idea'? of a topological theory is that of the
interaction among strands in the network. A word sirand
means a polymer chain which joins two neighboring junction
points. A word junction point means the jointing part of
strands in the networks.

In the TNT or PNT, polymers having elasticity are regar-
ded as composed of the network which consists of a great
number of junction points and strands. In general lattice
models, a fundamental unit, which describes the physical
properties of the whole network system, is called a cell.

In the TNT, it is assumed that the network, is a set of re-
gular arrangement of cells. Three assimptions of the TNT
are as follows:

(1) The network is composed of N, identical cells, each of
which consists of sufficiently large number of strands and
junction points. Let Nybe the number of total junction points
of the network.

(2) The network is a set of cyclic arrangement of cells.

(3) Under a strain relative displacements of mass centers
of cells are exactly affinelike.

It is necessary to introduce the conception of a GLC
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attractive

repulsive
Figure 2. Topological states and GLC's, f.e., To's, for the ring
polymers aand 8. If Tag = 0, then there is a repulsive force between
loops, otherwise there is an attractive force,

(Gauss Linking Coefficient). Let’s define 7, to be the GLC
between loops a and # and g, the GLC between strands a
and & as follows:

(paXpa) (pa—pa)
ff 1pa —p,g,l’cr dSatSe (1)

fraf Papr (P;z Pb) dedSb (2)
‘Pa pbl

where o, is a position vector determined by a parameter S,
which takes the variation field within the segment at any mo-
ment and #; = dp,/dS,, the subscript & being «or 8 for loops
and ¢« or & for strands. The picture illustrating the meanings
of Egs. 1 and 2 is given in Figure 1, Here two pentagonal
loops « and g are shown. Loops @ and #are composed of five
segments respectively. Position vectors of segments in loops
are represented as the ones joined directly from the origin of
the network system to center points of segments. If we let »©
and r# be the sets of position vectors of loops e and &, respec-
tively, we have

ri= b a5 AL e
=1, 5 15 i it (3}
A bond vector b, which joins the center points of two neigh-
boring segment, is defined by
T f(' (4)
Thi sews of bond vectors 3% and 52 of loops  and & are given
by
b%= {61, b3, b3, b%, b5t
=18, &, 85, bl 651 (5}

In general, there are a great number of loop GLC's, such as
T, T}, and etc. Let T, and ¢ be the sets of loop and strand
GLC’s respectively. Let T, be a subset which meets the con-
dition that all elements of T, should be represented as linear
combinations of elements of T',. Now the transformation ma-
trices between the sets of loop and strand GLC’s are given by

=8C

=T,B

T'l - 8 .r‘

Ir=CB (6)
where T, T, and @ are »,, n;, and », dimensional row vec-
tors, respectively, and I" is #, X 2, dimensional matrix. n,is
the number of GLC's of T, #, that of GLC’s of T, and n,
that of GLC’s of 8. Let 7he any element of T}, r°? the set of
position vectors of junction points in the reference state, and

r the set of those in any state. For a given state let F be the
free energy of the system, ¥ the topological distribution
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function, and V(A the volume under the macroscopic strain
A, then the free enrgy Fla,7)"7 is given by

F,7)=% {—lenfM Fir, r)an ®lclr’) ()

where¥ {r|#) is the conditional distribution function given as
a function of  when the position vectors are fixed at 7°, The
total free energy of the network F may be separated into four
terms as follows:

F=F;, Ph+F0. mp+Fl+F2 {8}

where F,, is a term coming from the entropic force acting
between ends of the strands, and £, is one coming from
the topological interaction among the strands when all the
junction points deform affinely. F| is a correction term due to
nonaffine displacement of the junction points, and F, is one
due to the fluctuation of . Transition matrices of Eq. 6 con-
tribute only to F,.

It is likely good to go on after considering the meanings of
Tes . As shown in Figure 2, Tus has the only integer values.
When Teas = 0 there is a repulsive force, while in case that
Tapx 0 there is an attractive force between loops ¢ and 8.

A generalized inverse® of any matrix A is defined by

A'=(A'A) A (9)
where A, of course, is a transpose of A, and (4° A) 'is an in-

verse matrix of A°A. The projection matrices of T and C are
given by, respectively,

r‘sr(r‘ort

cr=c(ce) ¢ a0
According to proofs'” of matrix relationships,

I"i': C’

Trr'=TrC'=n, an

whre n, is the number of elements of 7',. In other words, #, is
the number of effective loop pairs. I"# should be found accor-
ding to the given model of the network as shown later more
clearly.

Distribution Function and Free Energy

In the PNT or TNT, the free energy of networks is ob-
tained from the distribution functions of junction points and
strands. The conditional distribution function ¥ (zl7) is given
by

F(rlf)=fj::’f5 t-org

+(Go/H,}2nH,) " exp(~ @L/2H,))d8 at 12

where & is a delta function. G pand Hpare given by, respec-
tively

(1-G/H,) & (8,)

Gor)=v"*7g,(r) 13
Hyry=v"?yh,(7) (14

where 7 is a characteristic parameter for the given model,
and ' is the number of submolecules included in a strand. It
is assumed that every strand has the same number of sub-
molecules, and that every submolecules has the same
number of segments. In Eqs. 13 and 14, p stands for the bond
pair of the strands @ and b, and 7 is represented by
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r=Aro vy, 1y, ¥} {15

where 7, and 7; are the position vectors of end points of the
strand &, and 7, and 7} are those of the strand 5. Let the letter
# denote the bond pair of the submolecules a;and b; and the
letter #’ that of the submolecules ¢’; and &/ When the vector r
is fixed, let P(O.]7) be the dlstr:butlon function of single
contact obtained when the bond pair g is formed, and
Py, 7} that of double contact obtained when the bond
pairs g and g’ are formed between two strands in a phantom
network. Then the &ylr) and kp(r) in Eqs. 13 and 14 are given
by

&) =y "'E Pou0,l?) 18
by )=y gy E E Pon Qe 1)

where g,(7) is the value of the mean single contact probability
and 4,(r) that of the mean double contact one between sub-
molecules in two strands.

The distribution functions ¥(»,z} and ¥ (¢}") can be ex-
pressed as

¥ o) =Pu(N¥ (|7 {1
oy T+ /2 N
vl )= [T n e @

where P,,(7) is the distribution function of junction points in a
phantom network. When the network is in the topological
state 7 and occupies a volume W(A) whose shape is determin-
ed by a, its free energy is defined by

F.o)==kTh [ ¥iro) o a8
e
Then the free energy averaged over the set of /is given by
F,7#)=EFQ, ) ¥(zlr"). t9
Detailed Form of the Free Energy

The derivative of the total free energy of the network F
with respect to Acan be given as follows'’:

QF___HaFggh aF.,me aF Q‘l

21 aA T aa J’E“r EY 20

a;‘; -3z 1, (78 —52) o)

BFy 100 g grlgs—hy)

a;\ kTE [(gp ht) {h; k;(gt ht)]+2kt
{& £)) )

g
%-’i—* kTT (WS (K> —2< VP>

(KW HVVS (KW ) <>
s (<KW*>)1) @23

_ '* ° < _
G TR et 1 5 s (ry

-). 04
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The above Egs. 20 to 24 are main parts of the TNT. Now it is
likely good to consider the physical meanings of all terms in
Egs. 20 to 24. The letter s of Eq. 21 stands for any strand in
the network, and # is the mean squared end-to-end distance
of the strand s in the phantom network. The position vectors
of end points in the strand s are expressed as #; and »,. The
symbol dot (.) denotes the first derivatives of given functions
in regard to A, such as

ws O3 .4 073 '*=§g;_ ......

S TR TR L PR 2
In the above equations, the superscript o attached on the g,
and h, represents that they are the values at » = * and the su-
perscript * attached on the g,, &, V, W, and etc. denotes that
they are the ones at ¥ = 7*, 7 * being the set of position vectors
of junction points deformed affinelikely under the macros-
copic strain A. Also the g, and #,, of course, are given by Eq.
16. Note that the usage of the superscripts o's and *'s just
defined will be fixed throughout this paper.

Now a new function {/is defined by

=—ln¢(3,?’)te.s- (26)

where ¢ (8,7 is the distribution function expressed as vari-
ables of g and . Letting M be the number of junction points
in a cell, which is the fundamental unit of lattices, the new
quantities V* and W* are defined by

_ 3
I/:‘——anUlr-w @7
9 0o
Wf”'a—n a—nUlﬁﬁ 28)

where V?* is an M, dimensional super vector whose ith ele-
mentis V¥, and W*isan M, x M, super matrix whose {,j ele-
ment is W} Recall that in a network #, is the number of ef-
fective loop pairs and that », is the one of effective strand
pairs. [*#, which is an »; x 7, dimensional matrix, of Eq. 24
1S

r"=1-r* 29
where " * has been given in Eq. 10, and 1 is an 1, x #, unit
matrix.

To find the free energy of a network, we have only to cal-
culate terms of the right-hand side of Egs. 22 to 24. The de-
tailed method %17 to calculate the values of the &, h,and etc.
of Eq. 22 will be discussed in Section 5, and the detailed pro-
cess to calculate the values of the <V*>, <V*V*>,
<W*>, and etc. of Eq. 23 will be stated in Section 6. By us-
ing the newly devised BCL model, the detailed method of cal-
culation of I'* of Eq. 24 will be shown in Sections 7 and 8.

g, and A,, and Their Derivatives

Recall that the relationships and physical meanings of the
84N, hfn), Poy(Oul7), and Pu{0.,0u|7) have already been
shown in Section 3. To calculate the g,(») and A,(r), it is
necessary to know two contact probabilities, the £,(0,,,.)
and Ppy{Oyuper Oy 5| 7) for the submolecular pairs {ax,b¢) and
{ax’.br") when the terminal points of strands @ and & are fixed
at 7= (r, 72, 7;, 7). In the absence of the excluded volume ef-
fect among the submolecules, the former is given by

Pph (Ocubvl ry= 3y’ 2/2?!‘!’“27!)9_}31)3/2 .
exp (-3 (ky=k2/k,) 121%) 30
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where the &, k,, and k; are expressed by
ky=v’ fua+v’ jup
ke~ 1o/ k7, [t 1y vh0i /5 81
by =0/ ut ot (@05 07 )5 (= 7))/’
=~ )/v’.

The latter having two cases according to conditions is repre-
sented by

-Pph (Oaubw at by I?’) =
Oy /antltaved v Audv | K, | )73
exp (-3 (K, - K,K'K,) /217) 82

where one of the two cases included in Eq. 32 above has the
conditions that #>#’ and #>¢’ and that the X, K,, and K,
are given by

P R L VU R VR V2 ]
! ~1/4u-1/4v U/« +1/v +1/Aut1/Av
P ( ré/ﬁ+r{,/z7]
Pl +7,/v 63
K,=v, fa+ A/ +A o+ 20y

= a= ) /v F =)/’

and the other has the conditions that 2> and < and that
the K|, K,, and X, are given by

K=[1/’R+l/v’+1/ﬂu+1/dv -1/4u-1/4v ]

-1/4u-1/4Av 1/« +1/84+1/Au+1/Av
K,- [ 25 /it /v ]
rofu +r, /T
Ky= 9" fa+vi/u +13 /o+1 /v
— =) v+ (r= )27 34

where v’ is the number of submolecules in the strands,
the #,u'e, and ¢’ are abbreviations of the au,ax’be, and
bv', I is the root mean squared end-to-end length of the
submolecule, and # = vy, F=v'y, Au=|u-u'|, and 4¢=
|e-v].

Considering Eq. 30, we know that the P,,(O,,,.{7) has the
form of the typical distribution function between submole-
cules in the strands ¢ and 4 in a phantom network. Appli-
cation twice of Eq. 30 leads to the formulation of P,(0,,,,,
Opype| V. For this the forms of P,y(O,,,, Oys,/?) are sepa-
rated into two cases according to the relative positions of
submolecules in strands and to the states of the distribution
between strands. Both of them have, like the P,(0,,,,7), the
forms of the typical distribution function of a phantom net-
work. By use of Egs. 30 and 32, the g,, and 4,, can be calcula-
ted,

The reduced distance d, which is a linear length joining
straight two centers of strands « and &, is expressed by

g=lrtn=rn-r| a5

24/v b

where & in the denominator of the right-hand side denotes the
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) 4
Figure 3. A diagram representing the tetrahedral structure of the
BCL model whose junction points are composed of body-centered
cubic lattices. Small circles represent the junction points, straight
lines the strands, and dotted lines the edges of lattices.

length of a segment, and y the degree of polymerization of a
strand, that is, the number of segments of which a strand
consists,

From Egs. 16, 30, and 32, we know that the g,(z} and
h,{7) can be expressed as functions of ¢, such as the £
and h,(d). Derivatives of the g, (1), h,(#), and etc. in regard
to r are calculated by

Ogar(r) _ 88a(r)  8d(ra 74, 10, %)
ara Bd ar,

Ohas (1) _ Bhoyld) B8d(ry ¥} 10 75) 69

o ad arn,

<V*>,<P*V*>, < W*>, and Their Derivatives

We see that the explanation of ¥V and W has already been
given in Section 4. The averages of the V*, V*V* and W*
are all the functions of r* »* (whose definition is given in
Section 4} being expressed by

r*=rTA @37

where 7"is the position vector of junction points in the refer-
ence state, and A the diagonal matrix formed by three com-
ponents of a macroscopic strain A as follows:

Ay
a=(
From the cyclic nature of cells, the <V*>, <V*V*>,

and < W™ >can be described by the character of strands and
Junction peints in a cell. Their components are expressed by

<SVE>=VA+E <VA> 689
<VF m‘)=<m‘>(m’>+‘§ [<V;:", >

- <%.‘;><Vp";' >] (40)
<W};">= p:.u' +§ ‘<m-'u'> 41

where the V3, ;and Wy, , are components of the V*and W*
in a phantom network, respectively. The V5, ,and W, . are
given by

Vii==3opg,, 0 a
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JevI-L LK1 Gy tie1,§01,ke1) Jod{g-

Lrtlietl) oaiget,ren,s-1]
n

’,
{a) \El K’ "ars (5)

Jev(i-1,)-1,k+1) Jeviist,i-1,k-1) Jod(q-1,r-1,8-1) Jod(qrl,e-1,8 41}

Figure 4. The definition of orientation of strands and general bond
modes around f,s's(a) and /,,’'s(b).

Walke =( — 3/v"I*}N, for I’ =1 43
@/v’i*)y  for I’ en,
0 otherwise

where v’ is the number of submolecules in a strand, and 2 is
the mean squared end-to-end distance of a submolecule. #, is
the set of all the neighboring junction points with which a
strand combines, and N, the number of elements of #, For
example, ¥, has the value of 6 for the SCL model, and 4 for
the BCL.

<Vt >, <VXVoh >, and <W, % > in Egs. 39 to 41 are

given by

<Vol> =A% (-gy /b)) +BN(go /hy) +CoXeo 8
VLV >=ANAN (1-g5/h) +BXBoy (g5 /h)
+ BhGA T CABY g +GICK g0 hy 49
<Wolu >=AN (1 -g5/h;) + By 85 /h)
+Clags 6)
where the g) and k) are the values of the g, and 4, respec-

tively when » = °. Terms appearing in the right-hand side of
the above equations take the form of

A= (g h—ht g/ (g5 —h})

Bli=g,h—3hX%/2

Coli=hot/2h}

At = @k = hote =BG FhAhY ) 82 ) (8 - h2)
~ (o= o) (8o — ot ) gE RS/ (G — h}2)

Bty =8ohw —3h,% 12— 8ot 8ok = 30,5 1% /2 an

Colte = oty — 205 R,% ) 1207 808 ol 8,4

where the g,%, A%, g%, and Aot are given by

gon=1(3/0 n*) In g}

ht=1(3/8 7¥) In hX

&'w—1(3/0 r*)(8/3 #*) In g} )
o= (2/2 #*)(3/3 »*) In kX,

Calculations of the <V VF>+<VFVE>and < Wi > are
carried out by differentiating the <V#Vj#>and < Wi> in
regard to A, respectively. By using Egs. 23, 39, 40, and 41,
we can calculate F|, By use of Eqgs. 16, 30, and 32, we can ob-
tain the value of F, ,, from Eq. 22. By reading coordinates of
position vectors of junction points, we can compute F, ok
teadily from Eq. 21. Now it is the calculation of F, from Eq.
24 to be left to us. For this work we should find I"#, which is
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determined specifically according to any model given.

Thus, we will suggest the new modetl, that is, the BCL
model, which is the first created by the authors, in Section 7,
and originally give a series of equations due to the madel.
Furthermore in Section 8, we will show the detailed process
for the calculation of the projection matrices of the new
model.

BCL Model

The picture of the three dimensional structure of the BCL
model is given in Figure 3, where solid lines denote strands
and small circles represent junction points. Considering only
the arrangement of junction points, we see that the three di-
mensional structure is a collection of typical body-centered
cubic lattices. But the arrangement of strands around any
junction point takes the form of a typical tetrahedral struc-
ture.

In the BCL model, junction points are classified into two
categories according to the methods of their combination
with neighboring strands. One is the set of junction points
corresponding to the apexes of lattices, and the other to the
baody centers of lattices.

Let /.'s be junction points of the former and J,;/'s the lat-
ter. For either /. ’s or J,;'s, two different spatial orientations
per junction point can he allocated in the way of combination
with four neighboring strands around a given junction point.
The effects of these two arrangements, however, are essen-
tially identical in view of contribution to the free energy of
the system, so it doesn’t matter which of them is chosen in

going on disscussing. A J,, in the central part of the system is .

usually selected as an origin of the coordinates. For conve-
nience, letting the length of an edge of lattices be 2, we can
describe readily the coordinates of every junction point as a
set of three components having only values of integers, Char-
acteristic combination modes of strands around the general
junction points /,,'s and /s are plotted in Figure 4, where
the spatial orientations of strands, in addition to the coordina-
tes of junction points, are defined on the basis of a J,,.
Letting ¢ be a position vector representing, independently
of J,, ot [, any junction point, three components of this and
variation fields of components are given by, respectively,

=14, ., k)
i=-I-I+1,-,1-11 (49
j==J =J+L e ] =L
b=-K -K+1,-, K-1, K
where the 7., and K are all positive integers. Note that the
components of every /. all have values of even integers, and
that those of every J,, have only values of odd integers. As
plotted in Figure 4(b), spatial orientations of all the strands in
the system are reduced to only four. For convenience, let o,
org;;4(0=XY.Z and W) be the symbol denoting a strand.
The four spatial orientations of strands in the system are de-
fined by
Xusa—strand from Jo, (478) to Joo(i=1,j+1,k+1)
Yo e=strand from /., (ij,&) to Joo(i+1,7—-1,2+1) GO
Zs.x=strand from J.,(i,5,2) to Joe(i+1,74+1,k-1)
W, ,.a=strand from J,, (4.8} to Jos(i— 17— 1,k-1)
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Figure 5. A diagram representing directions of rotation of toops
and four hexagonal unit loops around a /,,. Small squares represent
the f;,'s and small triangles the J,'s.

where the picture for these orientations is shown in Figure
4(b}. Though the number of loops formed around a J,, is all
12, these are reduced to only four unit loops, that is, 12 loops
can be represented by the linear combination of 4 unit loops.
In similarity to the case of strands, let #, or w;, (¥ =§,5.¢,
and &) be the symbol denoting a loop. The four unit loops,
which are all hexagonal types consisting of 6 strands, around
a J.{1.7.k) are expressed by

Eux“":Xux‘ uf;n:m:_" Yu+!k+8_XJ+Nk+l+ I'Vs-t-zzk e~ Yip

/T Ym_xtn.r— :x+Z;+ -2k Yu zm—z+Xu !Jk—l-Zuk
$m™ Wir— Yoz 12 Woase-st Yo 2= Zox 5
Eur=Xin—Zsprest Wegner= Xes T L ggmax— Wix

where the minus symbols attached to terms of the right-hand
sides denote the inverse of orientation of given strands.
Thus, the orientation of rotation of unit loops also is describ-
ed in Eq. 51. All the relationships for 4 unit loops stated up to
now are shown apparently in Figure 5, where the symbols of
cyclic arrows denote the orientation of rotation of loops,
small squares represent [..'s, and small triangles are J/'s.

The letters X, Y,Z, and W denoted along loops represent
the orientation of strands, defined by Eq. 50. In describing
junction points of lattices, it is usually convenient to discuss
the physical properties of the system by separating f,,'s and
J.2's respectively. Since the distinction of /s and J,,'s deri-
ves only from the description of the coordinates, the forma-
tion mode of 12 hexagonal loops around any junction point is
exactly identical for either a J,, or a J;. After considering the
system composed of only J,'s, we can also apply the informa-
tion obtained above to the system of only J,,'s. Thus, first we
consider the system composed of only /,,'s. We can see readi-
ly that the structure of lattices in this system is that of the
SCL’s.

Let ¢ be the coordinate system of junction points, inclu-
ding all /,’s and f;'s, along the x- axis, then we have

=-LI+1, - 1-11
1=2Q
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i ==2Q, ~2Q+2, -, 2Q-2,2Q &2
q=t' 2=—-Q - Q+1, - Q-1,Q

where the letters 7 and @ denote positive integers, and in
particular, [ is a positive even integer. In similarity to the
x-axis system, along the axes y and z the following refation-
ships are given by

J =2R
r=j/2 63)
K=28
s=k7/2
where J and 7 correspond to the y-axis, and X and s to the
zaxis. Now expressing Eq. 51 as the newly reduced coor-
dinate system (¢,7,s), we obtain a series of equations given by
£ qfc=ers_ an wit Ywﬁm 1= Xﬂ- 178+ 1+
W;+ 1reet Yera
7 qra— qus-xq+:rh|s+ze+w—|a_ Yc-nn-l

+X¢+ 1181 "Zcra 64
£ are™ Wors— Y- 171 g 1re1™ Warersmn

+ an- 11" qu
8 ars=Xore— Zo-rrart Weir-1a— Keir-10

+Zfzh|r- 18~ w:n-a'

Eq. 54 is not arithmetic expressions, but symbolic ones. In
Section 8, Eq. 54 will be transformed into arithmetic expres-
sions. Also Eq. 54 is indispensable expressions leading to cal-
culation of the projection matrix I** of the BCL model. Since
all the loops in the system are formed by exactly alternate lin-
kings of /,/'s and J,,’s, unit loops around any /,, take the same
linking form of strands as that of /,'s given in Eq. 54.

Projection Matrix r*

It is assumed that the network composed of lattices is
cyclic in the direction of the axes x,y, and z, respectively. For
junction points, strands, and loops, respectively, it is assum-
ed that

}Q+1s-3=}-qra. ]Qli—ls':)rq-llv ]qrs+ 1-)rqf—s

Torirs” T -gras T orria™ Tg-an  Tarst1™ T qr-s 69)

Ugr1sa= U. ers Urirs™ Uq— Ra Uqrs-v 1= Ur-s

where J's denote junction points, and ¢’s and {/'s represent
strands and loops, respectively, All the coordinate systems
used in this section are equal to those of Section 7. Let Tors
and U, be expressed as the form of triple products, that is,

T qrs=0q0 50 6

Uprs=U, U, U,

where though single terms of the right-hand sides have no
physical meanings, triple product terms, each of which is
composed of three single terms, have the same physical
meanings as terms given in the left-hand sides. As stated pre-
viously, ¢’s denote strands, and {7's loops. Letting ¢ cand Uy
be all (2L + 1)-dimensional row vectors, row vectors of
strands and loops are expressed by

Xq- (XQXQ-I'“X—Q+IX-Q)
Xa = (Xan~1“‘X-n+tX—n)
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verreneas {5‘”
&= (8131:-1"‘8—3”8-;}
&s= (ssas—s’"a—hu&-s)-

From Egs. 56 and 57, ¢ and U take the form of row vectors
given by

e=XYZW 68
U=( n ¢ &)
where the X, V,Z,--., 1 £, and & are expressed by
X=X, @X, ®X;, Y=Y, ®Y,®Y;
L=Z,82;®Z;, W=W,® W,;® W; 59
§=£,®E:®85, 7=7e®72®ps
§=§e®§n®€s- F=0@8,®6;

the symbol ®being a direct product between matrices. Let
U be a (2L + 1)-dimensional unit matrix given by

(1
1
U]_- 1
e |
N 1
and let D; be a (2L + 1)-dimensional matrix defined by
’ l _l"
-1 1
-1 1
-11
DL= ve
-1 1
-11)

\

where all the blank parts in square brackets have the values
of zeros, and such a usage will keep being used in expression
of all the matrices appearing hereafter, Let g, b, and ¢ be ma-
trices given by

e=U,@D,0 D
b=D,0 U, ® D; 62
c=D,®D,® U

where ¢,b, and ¢ are all (2@ + IX2R + (2S5 + 1) x(2Q+ 1)
(2R + 1)(2S + 1)}-dimensional matrices.

By use of Egs. 60 to 62, Eq. 54 can be transformed from
symbolic expressions into arithmetic ones. From the con-
sideration of the loop ¢, formed at a /,(¢,.s), the [(2Q+1)
(2R + 1)(2S + 1)]-dimensional row vector, which is the set of
all the unit loops having the same modes as £ s iN the system,
in Eq. 59 can be expressed by the lingar combination of the
X, Y,Z and W as follows:

Eqra_ers_ Xc+1m+1+ Y;ﬂ- 19417 Y;ra
+ u/qnfaﬂ" Mrnsﬂ 63)
=XquXa_Xq+1XrXs+1+ Y;K+|. st_
};Y;K_F w:xn W:-WZH— MM+1 H/;H

§=- (XQDQ) @ (Xn Un) ® (X&Ds)
H (YU @ (YiDp) ® (Y:Ds)
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+ (WeDe) ® (Wi (= Dy)) ® (WLUS)
= = X(De® Up® D) + Y(U® D ® D)

+ W(De® (= Dp) @U5). 64
Substitution of Eq. 62 into Eq. 64 leads to
= - Xb+ Yo— We. 65

Similarly to Eq. 65, the following equations for #,£, and & are
obtained by

n=-Xa—- Yo-Z
¢ =Yc—2b- Wa 69)
0 = Xc—Za— Wh,
Rearrangement of Egs. 65 and 66 leads to
-b=-a 0 ¢
(enze) - (xXYZW)| ¢ R B
-¢ 0 -a¢ -b
or
U=e¢B 68
where B is defined by
-b-a 0 ¢
a~-b ¢ 0
8= 0 ~¢c —-b -a
-¢ 0 -a-5b). 69

From Eq. 67 or 68, we see that the matrix B, which has a
[42Q+ DR+ 1)(2S+1) x 42Q+ 1X2R + 1)(2S+ 1)] dimen-
sion, is a transformation matrix transforming loops into a
linear combination of strands.

We define ¥ and E to be

2=0®o

E=UU. {70
From Eq. 68 we obtain

E=2C N
where C is defined by

C=B®B, (72}

For a quick comparison with Eq. 70, it is advisable to
transcribe Eq. 6 as follows:

7,=8C, T,=6r. (6)

Since £ included all possible products of the type UjU;, and
Z, all possible products of the type o,q,, the Eand Z are
identified, respectively, to the Ty and ¢ , and then Eq. 71 is
reduced to the first equation of Eq. 6. Also it is apparent that
C of Eq. 72 is equal to that of the first expression in Eq. 6.

Using the first equation of Eq. 11, we should find C*.
From the character of matrices!?,

C*=B'® B’ 03
Let M, be an orthogonal matrix whose elements are defined
by
v1/2L+1

[q;_]g;'- V2/2L+l COos (ZN“’/ZL'FI)
V2/2L+1 sin Quil’ J2L+1)

Bull. Korean Chem. Soc., Vol 10, No. 1, 1989 91

for " =0
for {"=1,-, L {74
for '!=-1,', -L.

And let 4, be a diagonal matrix given by

d.
di-y
@S

AL d—l.+1

d..
where the I'th diagonal element is
dp =2sin® (x0’ /2L+1). 78
D, is rearranged into
D, -Mf A M, (n
Substitution of Eq. 77 into Eq. 62 leads to
B=P FP v
where the Fand P are given by
-8 =a 0 v M
= @F 7 0 p | M 9
0 -y -8 —-a M
-y 0 -a -8 M
where elements of the right-hand sides take the form of
a=U®A,04;
B=A,0U,84; 80
Y=ABA,® U
M=M, M, M.
In above equations, ,#, and 7y are all diagonal matrices be-
cause all these are given by direct products of diagonal matri-
ces. For example, expressions of ¢,8, and y are expressed,
respectively, by
Ap,s= ( Cu2r+1) a5+ 1M
Tuzhs 1H3S+ 1) -1l
Baos= ,ﬂllze+1l(3.&'+l}l
ﬂl!lﬂi‘lli!&tl]-ll
Yo n™ [ Yusaenizgew
Yus@eniere 1)- 1
[ - 8D
where the detailed forms of elements in square brackets are
given by
@ps— 450 (27/2R+1) - sin®(xs/25+1) 82
Bas=dsin® (ng/2Q+1) - sin’(zs/25+1)
Yor=4dsin’(zq/20Q+1) - sin* {nr/2R+1).
Since Pis the orthogonal matrix, we obtain
Bf=(P'FP)'=p*F*P 83

where F* is the projection matrix of F.Since Fisa 4x4
super matrix whose elements are all diagonal matrices of the
same dimension, it can be transformed into the following
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Table 1. Values of B* (600, 04,0 for Q=R=8=16
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@) (.0

(X.X) X1 (X2} (X, W) (Y.2) (Y (Z, W)
(0,0,0) -0.2304 -(.2304 3.1625 0.1463 -0.2204 0.2481 0.6774
(0,0,1) 0.4310 0.1325 -0.2742 0.4310 0.0012 -0.0042 0.4310
(0,0,2) 0.0438 0.0382 -0.0273 -0.0547 .0224 0.0394 -0.0273
(0,1,14) 0.0824 -0.0631 0.0431 -0.0228 3.0119 -0.2418 6.0012
(0,1,15) -0.0421 0.0339 0.0229 -0.0421 -0.0116 0.0175 0.0033
(0,1,16) -0.0327 -0.0533 0.0420 0.0668 0.0241 0.0082 0.0082
(1,0,0) 0.2104 0.0448 0.2174 0.0271 -0.0172 0.0004 -0.0172
(1,0,1) 0.0661 -0.0272 -0.0182 0.0664 0.0084 -0.0064 0.0213
(1,0,2) 0.0588 0.0171 -0.0174 0.0448 0.0669 -0.0081 -0.0174
(2.16,0) 0.0072 0.0041 0.0082 -0.0412 00014 04041 0.0017
(2,16,1) -0.0332 -0.0913 0.0172 -0.0027 0.0008 0.0172 0.0062
(2,16,2) 0.0994 0.0881 0.0851 0.0121 -0.0051 -0.0816 -0.0001
(8,8,8) 0.0082 0.0043 -0.0058 0.0013 0.0043 -0.0019 0.0094
(16,15,14) 0.0024 0.0012 0.0011 -0.0011 0.0010 0.0011 0.0004
{16,15,15) 0.0836 0.0811 -0.0810 -0.0014 0.0172 -0.0810 0.0043
{16,15,16) 0.0996 -0.0732 0.0120 0.0144 -0.0732 0.0182 0.1011
(16,16,14) -0.1014 0.0999 -0.0082 0.1014 -0.0795 0.0682 0.0541
(16,16,15) -0.0335 0.0114 0.0023 0.0249 0.0248 0.0413 -0.0311
(16,16,16} 0.0227 0.1624 0.1463 -0.1732 0.2432 0.2304 -0.0129

block matrix by changing orders of row and column vectors products of two of B”s, Letting 1" 1( Ogrsr Oy s NG oy, Tityg]

properly:
A

- Ix
F for 84

—Bas—ans 0 Yar
@rs— B s Yar 0

K= 0 —7ar—Bgs—ans &
~Yer 0 —ans—Bas
where A =(g,7,9).
Thus,
S

F“ f.\“ (861

where f%, £} - are projection matrices of fa, f1, -+ given by
Eq. 86. After the matrices £, /3., are calculated numerically
for the large value of Q,R, and S, they can be transformed in-
to B* with use of Eq. 83.

As exposed in Eq. 69, since B* has highly symmetric
structure, it is sufficient to find elements of Bf only for the
strand pair ¢ 4gp and o, (0,0'= X, V,.Z, and W).

A number of elements of BY for @ = R = S = 16 are given
in Table 1. In Table 1, since the strand pairs (X, X)(Y, 1),
(Z,2), and (W, W) all have the same values, they can be repre-
sented only as the (X, X). On the other hand, (X, ¥) has the
same value as (Y, X); (X, 2y as (Z,X); (X, Wyas (W, X); --; and
(Z, W) as (W,2). As a result, totally 7 of independent pairs
{s,¢")'s for any junction point are obtained,

To obtain I" * with the aid of the first equation of Eq. 11,
we have only to find C*. Any element of C* is given by direct

be an element of the matrix I'* for the pairs (g,,, o},-) and
(0 gy O gitoprge), We have

r'[(aqran a;’#‘s’) (0:" LA A J::”,.w S")] @ﬂ
=B#{0wn. 010"—-4"‘-1'!!8’-@)'

B’ (0;;0, m’::” -@Ne =gt gl }

with which all the other elements of I"*are obtained,

Having calculated the projection matrix I'* of the BCL
model, we can calculate F, by using Eqgs. 24 and 87. Thus we
can compute compietely the total free energy of the network
through the process discussed up to now.

Application to the Sample PDMS

The process of formation of the sample PDMS(poly(di-
methyl siloxane)} is as follows:

CH,
n<<:H,),Sic1,+nH,o——»—[—o-s'i{n—+zn HCl 69
[}

3

PDMS (M,,=74.0, b=5.7 A)

where M, and & are the molecular weight and the length of a
segment of the PDMS, respectively. Recall that as referred
to earlier, a strand denotes a polymer chain which is fixed at
any two of junction points, If we let v be the degree of poly-
merization, which corresponds to the number of segments in
a strand, such polymers as polyisoprene, polystyrene, and
PDMS have the values of about 30 to 300.7 It is assumed
that the whole system of the PDMS is composed of the
BCL’s. A cell consists of 8 subcells, and the structure of a
subcell is plotted in Figure 6. Thus a cell has 128 junction
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Figure 6. A diagram representing the structure of a subcell and the
coordinates of its junction points, The size of a subcell, which is
composed of 16 junction points and 32 strands, is (4doi4dpllddy). A
cell is composed of 8 subcells. Thus a cell has 128 junction points
and 256 strands.

points and 256 strands.

Now consider the relationship between cells and the
whole lattice system, Letting Z,m, and p be the sets of the
coordinates of integers along the axes x,y, and 2, respectively,
we have

{=-8L, —8L+1,, -1,0,1,,8L~2, 8L-1
=-8M —-8M+1,, -1,0,1, -, 8M-2,8M~1 @9
p=-8P, -8P+1,, -1,0,1,,8P-2, 8P-1

where the L,M, and Pare all positive integers. if we let Cy, be
the number of cells, and N o that of junction points belong to
apexes of lattices, a series of the following expressions are
obtained by

Cy=(2L) 2M) 2P) =8 LMP
N, =128C,y=1024 LMP 60
Sy=2N, =2048 LMP
Nyey=Nyoa= No/2=512 LMP
where N, is the sum of N, and N,y and Sy is the number of

strands. In an actual calculation, we take L = M = P=4, and
then I,m, and p have the variation fields of integers as

{=-32, =31, -, 30, 31
m=-32, -31, - 30, 31 by
p=-32, -31 - 30, 31

where these variation fields are almost equal to those of
Iwatal” for the SCL model. Alternatively, physical properties
of the whole lattice system can be fully described only by the
lattice size of such a extent. Though the size of the lattice
system is increased more, all the calculated values of the in-
creased system are retained, if any, almost unchangeably. In
the region of Eq. 91, Cy has the value of 512, N, that of
65,536, and Sy, that of 131,072.

The value of v', which is the term necessary in the cal-
culation of the g () and h(r) given by Eq. 16, is fixed at 10,
which equals that of Iwatal” for the SCL model. Since the
more increased the value of ' is the more delayed the time
required in the caiculation of the computer is at the fourth
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T a=2dg ~~~. -

Figure 7. The length relationship of strands, which is in the stan-
dard configuration, of the pressed spring structures combined with
four junction points in a lattice of the BCL system.

power of ¥’, it seems that the value of 10 for ¥’ is the upper
limit of the computer used, and that the value gives enough
accuracy in the calculation of the free energy of the network,

Results and Discussion

The whole three dimensional form of the BCL model is
shown in Figure 3. Only one of their lattices is plotted in
Figure 7. At this stage it is necessary to introduce the con-
cept of the standard configuration, As shown in Figure 7, the
standard configuration denotes the form of arrangement in
which all the strands are arranged linearly with all the
strands pressed tightly in the form of springs. In the caicula-
tion of projection matrices of Section 8, the standard configu-
ration of lattices has been taken as the reference state of the
system, Now we introduce a parameter § related to the stan-
dard configuration.

As shown in Figure 7, letting 2d, be the length of an edge
of the lattice, the length of a strand must be /3 4, in the stan-
dard configuration, Since the value of /3 d, is the linear
length of a strand in the state pressed tightly in the form of
springs, if the pressed state of a strand is released, that is, if a
strand extends in random state, the actual length of a strand
will become longer.

In the state of the phantom network, the distance from
the center to an apex in a lattice corresponds to the root
mean squared end-to-end length, that is, /- b, of a strand.
Recall that the definition of & and v has already been stated in
Section 9. Now the definition of § is given by the ratio of the
end-to-end distance of a strand in the standard configuration
versus that of a strand in the phantom network, that is,

8=y 3d/ (v b). 02

The density of strands of an unit lattice C, and the reduced
distance § are expressed by

Comd (Mu/N,) v/ @)’ o3
5= (V3 /2) UMW/NYV* - CVP e e b7
=6,834 X107 C;V0 - w0 BT ©4

where N, is the Avogadro’s number. The coefficient 6,834 x
10-8 of Eq. 94 is obtained by allocating values of 74.0 to M,
In Eq. 94, C, is represented as the unit of g/ cm?, and b as that
of cm.

Typical elastic polymers, such as polyisoprene, polys-
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Figure 8. The g,d) and A,d) as functions of 4, which is a distance
between the centers of the strands, for the BCL modet. Solid lines
represent curves obtained when the root mean squared end-to-end
distance of a strand is 0.5,/ &, and dashed lines denote curves ob-
tained when that of a strand is 4/}, where v is the degree of poly-
merization and b the length of a segment in the PDMS.

2.0 .5

Figure 9. The g,(d) and &,d) as functions of & for the SCL model.
The notations are the same as those of Figure 8,

tyrene, PDMS, and etc. whose v values are given as 30 to
300, have the g values of 0.5 to 0.8. The functions igl{(r) and
k{7 given in Eq. 16 can be easily transformed into the func-
tions g,{d) and k(d), d being given by Eq. 35. The functions
g4d) and h,{d} are plotted according to the BCL model in
Figure 8, and according to the SCL model in Figure 9. In
Figures 8 and 9, solid lines represent curves obtained when
the root mean squared end-to-end distance of a strand is 0.5
¥vb, and dashed lines denote curves obtained when that of a
strand isv'v'6. In Figures8 and 9, the value of 4(d) is greater
than that of g4d) because the double contact probability is
greater than the single contact one due to the character
resulting from the relatively long length of a strand, As the
value of 4 is increased, the values of gp{d) and kp(d} become
smaller, for the increase of the reduced distance & decreases
the contact probability between two strands.

Also according to the relative ratio of occupation of junc-
tion points per strand, the height of curves in the BCL model
is higher than that of curves in the SCL model. From the
character of distribution functions in the phantom network,
we can see that the general shape of curves is similar in two
models. For the simple deformation considered here, we
have

Ae=A,=A""? 5
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Figure 10. The curves representing the total free energy of the net-
work and the four energy terms of which the total free energy is
composed for the. BCL model.
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Figure 11. The curves representing the total free energy of the net-
work and the four energy terms of which the total free energy is
composed for the SCL model.

t\z-tl.

Similarly to the SCL model, in the calculation of the < V*>,
<V*V*>, and < W*>, the contribution of strand pairs in-
cluded in the right-hand sides of Egs. 39 to 41 satisfies that

| 7at7s — 7= 7 |

d=(d, d,. d;)~ 2V b 35)
di+di+di/zs( 5 for A21 96
4 for A< 1
=[ 1 for A21 0
1.5 for A< 1 7
1077 for A= 1
°>
g‘“"[w-' for A< 1 o8

where the weighted value Z in the z-axis is given to consider
this unbalanced effect of the strain acting only along the
x-axis. Since the value of g,, is closely influenced by that of A
before and behind 1, the weighted value Z and g2, are chang-
edatA=1.

In Figures 10 and 11, F and four components of that are
plotted according to the BCL modet and the SCL model, res-
pectively. The contribution of £, to F is greater in the BCL
model of Figure 10 than in the SCL model of Figure 11. It
seems that such a phenomenon results from the fact that the
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Figure 12. The curve representing the variation modes according
to the parameter § for the BCL maodel. :
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Figure 13. The curves representing the variation modes according
to the parameter & for the SCL model.

contribution of junction points per strand is greater in the
BCL model than in the SCL model. Figures 10 and 11 show
that the main contribution to F is ¥y,

The changing modes of free energy curves along the val-
ues of & are shown in Figures 12 and 13, where the more de-
creased the degree of polymerization is, the more increased
the value of &is because that as the values of v are increased,
the contact probabilities of strands are increased, and then
contribution to F also becomes more increased. As the values
of o are decreased, the peaks of the energy curves are moved
to the left of the x-axis. It seems that the reason why such a
phenomenon arises is due to the fact that the increase of v
lets the interaction between strands be influenced sensitively
by the values of A after and behind 1.

With the experimental results?® represented by small cir-
cles, the topological calculated curves, in the BCL model and
in the SCL model, and the statistically calculated curve of
Flory!92325 gre plotted in Figure 14. In the statistical entan-
glement model, which has two parameters’ k= 10 and §=
0.05, of Flory, a departure from the Mooney-Rivlin form for
the stress versus strain curve has been explained as the con-
sribution of constraint energies restricting movement of junc-
tion points. On the other hand, in the topological BCL model,
which has only one parameter &=0.62, of the authors, a de-
parture from the Mooney-Rivlin form for the stress versus
strain curve can be explained as the topological interaction
between strands in the network. Thus it can be stated that
the topological interaction in the BCL model corresponds to
the constraint energy in the statistical entanglement model.
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Figure 14. The curves representing the relationship of the stress
versus strain on the PDMS sample. Here the curve of the BCL
model is compared with that of the statistical entanglement model of
P. J. Flory, with that of the topological SCL model of K. Iwata, and
with the experimental data depicted by small circles.

For the statistical model though the general explanation on
the experimental data has been successful, since topological
effects of junction points and strands in the system have not
been considered, and since individual contributions of junc-
tion points and strands to the total energy have not been
stated in detail, a theoretical reformation for this model may
be indispensable. On the other hand, for the topological
model, since the results calculated from this topological
maodel also have been in good agreement with the experimen-
tal data for the PDMS, and since the deficiency in the model
of Flory has been completed almost entirely, it is regarded, in
view of the theoretical background, that the topological BCL
model is better than the statistical entanglement model.

From the results of two models above and in the depar-
ture of the topological SCL model from the experimental
data, we can assert that the PDMS used as a sample? has the
tetrahedral structure of strands around junction points.

Finally, the authors would like to point out that signifi-
cance for the application of the topological BCL model to the
PDMS can be found in the fact that a great number of pa-
pers'®2'2 have been published by regarding the experimen-
tal data of the PDMS? as the standard values of polymer
experiments.
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Isotope Selectivity in the CO, Laser Induced Decomposition of
Trichloroethylene-H and Trichloroethylene-D

Sang Man Koo, Byung Soo Chun, and Kwang Yul Choo’
Department of Chemsitry, Seoul National University, Seoul 151-742. Received Oclober 17, 1988

The infrared multiphoton decomposition of trichloroethylene-H{TCE-H) and trichloroethylene-INTCE-D) was studied by us-
ing the high power COjlaser. The pressure dependence of TCE-H decomposition showed that the HCI elimination channel to
form CIC = CC] was the major step at high pressures, while the HC = CCl formation step became important at low pressures.
C1,C ~ CHey g pressure o HCl
low pressure

————— HC=CCl + 2C1(Cly)
The IRMPD of TCE-H and TCE-D mixtures with 10P(20) laser line showed that optimum conditions of large isotope selec-

tivity were the low system pressures and high laser powers.

The experimentally observed depeandence of the branching ratios

on the pressure and laser fluence, and the isotope selectivity coefficients were quantitatively explained by using the modified

energy grained master equations (EGME) model,

Introduction

In recent years the process of unimolecular dissociation
by intense infrared radiation has been the subject of exten-
sive studies, The initial impetus came from the very ocbvious
practicality of selective multiphoton decomposition!, It is well
understood that the IR selective nature can be effectively us-
ed in the isotope separation?, and selective dissociation-eli-
mination of unwanted impurities®. There have been many
theoretical* and experimental papers dealing with selective
multiphoton decomposition of various isotopes.

There are several approaches to LIS (Laser Isotope Sepa-
ration}, all of which rely on one common phenomena, the so-
called ““isotope shift’”’, which theoretically makes possible the
selective excitation. In practice, the separation is seldom
achieved because of thermal collisions between molecules,
because of the Doppler effect on the laser wavelengths, and
because of anharmonicity, etc. When the absorption wave-
lengths of two isotopes are far apart, it is relatively easy to
find and tune a laser to resonate at the absorption wave-
length of one isotope, thus pumping energy into the selected
isotope leaving no effect on unwanted isotope. For laser ex-

citation to remain selective, there must be a minimization of
collisional exchange of vibrational energy between the ex-
cited and unexcited isotope species.

During the last one and a half decade, many works on
deuterium isotope separation have been reported. Typical
molecules used for deuterium isotope separation were for-
maldehyde®, freon 123%, and fluoromethanes”. Other ex-
amples of laser isotope separation includes isotopes of boron
(BCly), carbon (CF, CF,COCF,) si]icon(SiFJ,-stﬂfur{SFe),
chlorine(CF,Cl,) selentum(SeFy), molybdenium(MoFy), Os-
mium(Os0, and Uranium(UF,, U(OCH)g) where the precur-
sor molecules are indicated in the parentheses.

The IRMPD (Infrared Muitiphoton Dissociation) of tri-
chloroethylene-H (TCE-H) was previously investigated in
molecular beam® and in static cell®, Lee and coworkers® ob-
served that C-ClI bond fission, C,HCly - -C,HCl + C1, was a
primary dissociation channel in their molecular beam-
IRMPD system. In contrast to this Steinfeld and coworkers?
reported that trichloroethylene underwent HCI elimination,
CoHCl; - HCI + C,Cly, as the mjaor reaction path at 10 torr
TCE pressure in a static cell. Choo and coworkers® resolved
the above apparent discrepancy by a detailed study on the



