• Title/Summary/Keyword: Energy Capture

Search Result 553, Processing Time 0.217 seconds

Maximum Power Control of Small Direct-Drive Wind Power Generator (소형 직접구동형 풍력발전기의 최대 출력제어)

  • Kim Chul-Ho;Lee Woo-Seok;Seo Young-Taek;Oh Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.875-877
    • /
    • 2004
  • Research related to renewable energy is urgently required to cope with the depletion of fossil fuel and the environmental pollution. This paper deals with maximum power control of 1kW rating wind power generator. To implement direct-drive generator, axial flux permanent magnet generator is adopted to test the converter. The blade is attached to the surface of outer rotor disk. Generally wind power generator is operated under the rated wind speed. To capture maximum power at my given wind speed, the coordination of generator and converter is essential. Buck/Boost converter is designed to charge 24V battery and under the low wind speed it operates as boost converter.

  • PDF

Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations

  • Bensaid, Ismail;Kerboua, Bachir
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.207-223
    • /
    • 2019
  • Current investigation deals with the thermal stability characteristics of carbon nanotube reinforced composite beams (CNTRC) on elastic foundation and subjected to external uniform temperature rise loading. The single-walled carbon nanotubes (SWCNTs) are supposed to have a distribution as being uniform or functionally graded form. The material properties of the matrix as well as reinforcements are presumed to be temperature dependent and evaluated through the extended rule of mixture which incorporates efficiency parameters to capture the size dependency of the nanocomposite properties. The governing differential equations are achieved based on the minimum total potential energy principle and Euler-Bernoulli beam model. The obtained results are checked with the available data in the literature. Numerical results are supplied to examine the effects of numerous parameters including length to thickness ratio, elastic foundations, temperature change, and nanotube volume fraction on the thermal stability behaviors of FG-CNT beams.

Sizing of a tube inlet orifice of a once-through steam generator to suppress the parallel channel instability

  • Yoon, Juhyeon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3643-3652
    • /
    • 2021
  • Sizing the tube inlet orifice of a Once-Through Steam Generator (OTSG) is important to protect the integrity of the tubes from thermal cycling and vibration wear. In this study, a new sizing criterion is proposed for the tube inlet orifice to suppress the parallel channel instability in an OTSG. A perturbation method is used to capture the essential parts of the thermal-hydraulic phenomena of the parallel channel instability. The perturbation model of the heat transfer regime boundaries is identified as a missing part in existing models for sizing the OTSG tube inlet orifice. Limitations and deficiency of the existing models are identified and the reasons for the limitations are explained. The newly proposed model can be utilized to size the tube inlet orifice to suppress the parallel channel instability without excessive engineering margin.

Optimization of compression ratio in closed-loop CO2 liquefaction process

  • Park, Taekyoon;Kwak, Hyungyeol;Kim, Yeonsoo;Lee, Jong Min
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2150-2156
    • /
    • 2018
  • We suggest a systematic method for obtaining the optimal compression ratio in the multi-stage closed-loop compression process of carbon dioxide. Instead of adopting the compression ratio of 3 to 4 by convention, we propose a novel approach based on mathematical analysis and simulation. The mathematical analysis prescribes that the geometric mean is a better initial value than the existing empirical value in identifying the optimal compression ratio. In addition, the optimization problem considers the initial installation cost as well as the energy required for the operation. We find that it is best to use the fifth stage in the general closed-loop type carbon dioxide multi-stage compression process.

Survey on Security in Wireless Sensor

  • Li, Zhijun;Gong, Guang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6B
    • /
    • pp.233-248
    • /
    • 2008
  • Advances in electronics and wireless communication technologies have enabled the development of large-scale wireless sensor networks (WSNs). There are numerous applications for wireless sensor networks, and security is vital for many of them. However, WSNs suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the lack of infrastructure, all of which impose unique security challenges and make innovative approaches desirable. In this paper, we present a survey on security issues in wireless sensor networks. We address several network models for security protocols in WSNs, and explore the state of the art in research on the key distribution and management schemes, typical attacks and corresponding countermeasures, entity and message authentication protocols, security data aggregation, and privacy. In addition, we discuss some directions of future work.

Integrated Applications of Microalgae to Wastewater Treatment and Biorefinery: Recent Advances and Opportunities

  • Nguyen, Van Tuyen;Limjuco, Lawrence A.;Lee, Kisay;Dang, Nhat Minh
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.242-257
    • /
    • 2022
  • Microalgae is becoming a vital component for a circular economy and ultimately for sustainable development. Herein, recent developments in different outcomes of microalgae for wastewater treatment and biorefinery were reviewed. From its primary function as a third-generation resource of biofuel, the usage of microalgae has been diversified as an integral element for the CO2 sequestration and production of economically valuable products (e.g., pharmaceuticals, animal feeds, biofertilizer, biochar, etc.). Principles and recent challenges for each microalgae application were presented to suggest a motivation for future research and the direction of development. The integration of microalgae within the concept of the circular economy was also discussed with various routes of microalgae-based biorefinery.

Buckling and vibrational information of an annular nanosystem covered with piezoelectric layer

  • Gao, Jie;Nie, Rong;Feng, Yongyi;Luo, Jiawei;Li, Siyu
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.233-245
    • /
    • 2022
  • Resently, the use of smart structures has been heightened up rapidly. For this issue, vibration analysis related to a graphene nanoplatelet composite (GPLRC) nanodisk which is attached to a piezoelectric layer and is subjected to thermal loads is explored in the current paper. The formulation of this study is obtained through the energy method and nonlocal strain gradient theory, and then it is solved employing generalized differential quadrature method (GDQM). Halpin-Tsai model in addition to the mixture's rule are utilized to capture the material properties related to the reinforced composite layer. The compatibility conditions are presented for exhibiting the perfect bounding between two layers. The results of this study are validated by employing the other published articles. The impact of such parameters as external voltage, the radius ratio, temperature difference, and nonlocality on the vibrational frequency of the system is investigated in detail.

A Study on the Hysteretic Characteristics of Self-Centering Disc Spring Brace (셀프 센터링이 가능한 디스크 스프링 브레이스의 이력특성에 관한 연구)

  • Park, Byung-Tae;Shin, Dong-Hyeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.89-96
    • /
    • 2023
  • The seismic retrofits of existing structures have been focused on the control of structural responses which can be achieved by providing displacement capacity through inelastic ductile action at supplemental devices. Due to their hysteretic characteristics, it is expected to sustain damage through repeated inelastic behaviors including residual deformation which might increase repair costs. To solve such drawbacks of existing yielding devices, this study proposes a self-centering disc spring brace that sustains large axial deformation without structural damage while providing stable energy dissipation capacity. The hysteretic behaviors of suggested brace are first investigated based on the quasi-static cyclic test procedure. Experimental results present the effective self-centering behavior and an analytical model is then suggested in order to reasonably capture the flag-shaped hysteretic behavior of the disc spring brace.

Interactions in transversely isotropic new modified couple stress solid due to Hall current, rotation, inclined load with energy dissipation

  • Parveen Lata;Harpreet Kaur
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.21-41
    • /
    • 2024
  • This paper is concerned with the disturbances in a transversely isotropic new modified couple stress homogeneous thermoelastic rotating medium under the combined influence of Hall currents, magnetic fields, and mechanical sources represented by inclined loads. The application of Laplace and Fourier transform techniques are used for the derivation of analytical expressions for various physical quantities. As an application,the bounding surface is subjected to uniformly and linearly distributed force (mechanical force). Present model contains length scale parameters that can capture the size effects. Numerical inversion techniques has been used to provide insights into the system's behavior in the physical domain. The graphical representation of numerical simulated results has been presented to emphasize the impact of rotation and inclined line loads on the system, enhancing our understanding of the studied phenomena. Further research can extend this study to investigate additional complexities and real-world applications.

Fabrication of YBCO Superconducting Bulk Magnets (YBCO 초전도 벌크 합성)

  • Sang Heon Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.407-411
    • /
    • 2024
  • In this study, we fabricated single grain YBCO bulk superconductors with control of the distance between the seed and the upper surface of the YBCO compacts. The magnetic levitation force of the YBa2Cu3O7 superconducting bulk, which corresponds to the energy amount of the superconducting bulk, was measured to be 32.634 N at the center of the bulk where the seed was placed. Under field cooling conditions, a capture magnetic force of 2.17 kG was observed at the center of the bulk. The trapped magnetic force curve corresponding to the stability of the superconducting bulk means that the superconducting specimens were well grown in the form of single grains.