Browse > Article
http://dx.doi.org/10.1007/s11814-018-0132-7

Optimization of compression ratio in closed-loop CO2 liquefaction process  

Park, Taekyoon (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Kwak, Hyungyeol (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Kim, Yeonsoo (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Lee, Jong Min (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2150-2156 More about this Journal
Abstract
We suggest a systematic method for obtaining the optimal compression ratio in the multi-stage closed-loop compression process of carbon dioxide. Instead of adopting the compression ratio of 3 to 4 by convention, we propose a novel approach based on mathematical analysis and simulation. The mathematical analysis prescribes that the geometric mean is a better initial value than the existing empirical value in identifying the optimal compression ratio. In addition, the optimization problem considers the initial installation cost as well as the energy required for the operation. We find that it is best to use the fifth stage in the general closed-loop type carbon dioxide multi-stage compression process.
Keywords
Carbon Capture; Closed-loop Compression; Compression Ratio; Multi-stage Compression; Geometric Mean;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Park, S. G. Lee, S. H. Kim, U. Lee, C. Han and J. M. Lee, Int. J. Greenhouse Gas Control, 46, 271 (2016).   DOI
2 S. H. Jeon and M. S. Kim, Appl. Therm. Eng., 82, 360 (2015).   DOI
3 J. Kotowicz, M. Brzeczek and M. Job, Int. J. Global Warming, 12(2), 164 (2017).   DOI
4 J. Moore and M. G. Nored, ASME Turbo Expo: Power for Land, Sea, and Air, 7, 645 (2008).
5 M. Moshfeghian, Variation of Ideal Gas Heat Capacity Ratio with Temperature and Relative Density (Tip of the Month), John M. Campbell & Co., Norman, OK, U.S.A. (2013).
6 J. M. Douglas, Conceptual Design of Chemical Processes, McGrawHill (1988).
7 CEPCI June 2017 Issue, SCRIBD, https://www.scribd.com/document/352561651/CEPCI-June2017-Issue, Accessed 11 Dec. 2017.
8 W. D. Seider, J. D. Seader, D. R. Lewin and S. Widagdo, Product and process design principles: Synthesis, analysis and design, Wiley, 3rd Ed. (2008).
9 N. V. S. N. Murthy Konda, G. P. Rangaiah and D. K. H. Lim, Ind. Eng. Chem. Res., 45(17), 5955 (2006).   DOI
10 W. L. Luyben, Ind. Eng. Chem. Res., 50(24), 13984 (2011).   DOI
11 S. G. Lee, G. B. Choi and J. M. Lee, Ind. Eng. Chem. Res., 54(51), 12855 (2015).   DOI
12 U. Lee, S. Yang, Y. S. Jeong, Y. Lim, C. S. Lee and C. Han, Ind. Eng. Chem. Res., 51(46), 15122 (2012).   DOI
13 S. Posch and M. Haider, Fuel, 101, 254 (2012).   DOI
14 K. T. Leperi, R. Q. Snurr and F. You, Ind. Eng. Chem. Res., 55(12), 3338 (2016).   DOI
15 A. Aspelund, M. J. Molnvik and G. D. Koeijer, Chem. Eng. Res. Design, 84(9), 847 (2006).   DOI