DOI QR코드

DOI QR Code

Optimization of compression ratio in closed-loop CO2 liquefaction process

  • Park, Taekyoon (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Kwak, Hyungyeol (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Kim, Yeonsoo (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Lee, Jong Min (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
  • Received : 2018.04.30
  • Accepted : 2018.07.26
  • Published : 2018.11.30

Abstract

We suggest a systematic method for obtaining the optimal compression ratio in the multi-stage closed-loop compression process of carbon dioxide. Instead of adopting the compression ratio of 3 to 4 by convention, we propose a novel approach based on mathematical analysis and simulation. The mathematical analysis prescribes that the geometric mean is a better initial value than the existing empirical value in identifying the optimal compression ratio. In addition, the optimization problem considers the initial installation cost as well as the energy required for the operation. We find that it is best to use the fifth stage in the general closed-loop type carbon dioxide multi-stage compression process.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Engineering Development Research Center (EDRC)

References

  1. W. D. Seider, J. D. Seader, D. R. Lewin and S. Widagdo, Product and process design principles: Synthesis, analysis and design, Wiley, 3rd Ed. (2008).
  2. N. V. S. N. Murthy Konda, G. P. Rangaiah and D. K. H. Lim, Ind. Eng. Chem. Res., 45(17), 5955 (2006). https://doi.org/10.1021/ie060534u
  3. W. L. Luyben, Ind. Eng. Chem. Res., 50(24), 13984 (2011). https://doi.org/10.1021/ie202027h
  4. U. Lee, S. Yang, Y. S. Jeong, Y. Lim, C. S. Lee and C. Han, Ind. Eng. Chem. Res., 51(46), 15122 (2012). https://doi.org/10.1021/ie300431z
  5. S. Posch and M. Haider, Fuel, 101, 254 (2012). https://doi.org/10.1016/j.fuel.2011.07.039
  6. K. T. Leperi, R. Q. Snurr and F. You, Ind. Eng. Chem. Res., 55(12), 3338 (2016). https://doi.org/10.1021/acs.iecr.5b03122
  7. S. G. Lee, G. B. Choi and J. M. Lee, Ind. Eng. Chem. Res., 54(51), 12855 (2015). https://doi.org/10.1021/acs.iecr.5b02391
  8. A. Aspelund, M. J. Molnvik and G. D. Koeijer, Chem. Eng. Res. Design, 84(9), 847 (2006). https://doi.org/10.1205/cherd.5147
  9. T. Park, S. G. Lee, S. H. Kim, U. Lee, C. Han and J. M. Lee, Int. J. Greenhouse Gas Control, 46, 271 (2016). https://doi.org/10.1016/j.ijggc.2016.01.019
  10. S. H. Jeon and M. S. Kim, Appl. Therm. Eng., 82, 360 (2015). https://doi.org/10.1016/j.applthermaleng.2015.02.080
  11. J. Kotowicz, M. Brzeczek and M. Job, Int. J. Global Warming, 12(2), 164 (2017). https://doi.org/10.1504/IJGW.2017.084511
  12. J. Moore and M. G. Nored, ASME Turbo Expo: Power for Land, Sea, and Air, 7, 645 (2008).
  13. M. Moshfeghian, Variation of Ideal Gas Heat Capacity Ratio with Temperature and Relative Density (Tip of the Month), John M. Campbell & Co., Norman, OK, U.S.A. (2013).
  14. J. M. Douglas, Conceptual Design of Chemical Processes, McGrawHill (1988).
  15. CEPCI June 2017 Issue, SCRIBD, https://www.scribd.com/document/352561651/CEPCI-June2017-Issue, Accessed 11 Dec. 2017.

Cited by

  1. Dynamic model and performance of an integrated sorption-enhanced steam methane reforming process with separators for the simultaneous blue H2 production and CO2 capture vol.423, pp.None, 2018, https://doi.org/10.1016/j.cej.2021.130044