Browse > Article
http://dx.doi.org/10.14478/ace.2022.1031

Integrated Applications of Microalgae to Wastewater Treatment and Biorefinery: Recent Advances and Opportunities  

Nguyen, Van Tuyen (Advanced Materials and Environmental Technology, National Center for Technological Progress)
Limjuco, Lawrence A. (Laboratory of Electrochemical Engineering (LEE), Department of Chemical Engineering, University of the Philippines at Diliman)
Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
Dang, Nhat Minh (VNU Key Laboratory of Advanced Materials for Green Growth, Vietnam National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.3, 2022 , pp. 242-257 More about this Journal
Abstract
Microalgae is becoming a vital component for a circular economy and ultimately for sustainable development. Herein, recent developments in different outcomes of microalgae for wastewater treatment and biorefinery were reviewed. From its primary function as a third-generation resource of biofuel, the usage of microalgae has been diversified as an integral element for the CO2 sequestration and production of economically valuable products (e.g., pharmaceuticals, animal feeds, biofertilizer, biochar, etc.). Principles and recent challenges for each microalgae application were presented to suggest a motivation for future research and the direction of development. The integration of microalgae within the concept of the circular economy was also discussed with various routes of microalgae-based biorefinery.
Keywords
Microalgae; Symbiotic systems; Wastewater treatment; Biofuels production; $CO_2$ capture; Sustainable development;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 O. Monroig, D. R. Tocher, and J. C. Navarro, Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms, Mar. Drugs, 11, 3998-4018 (2013).   DOI
2 W. J. Oswald, H. B. Gotaas, C. G. Golueke, W. R. Kellen, E. F. Gloyna, and E. R. Hermann, Algae in waste treatment with discussion, Sewage Ind. Wastes, 29, 437-457 (1957).
3 W. N. A. Kadir, M. K. Lam, Y. Uemura, J. W. Lim, and K. T. Lee, Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review, Energy Convers. Manag., 171, 1416-1429 (2018).   DOI
4 N. M. Dang, and K. Lee, Decolorization of organic fertilizer using advanced oxidation process and its application for microalgae cultivation, J. Ind. Eng. Chem., 59, 297-303 (2018).   DOI
5 Y. Chisti, Large-Scale Production of Algal Biomass: Raceway Ponds, In: F. Bux and Y. Chisti (eds.). Algae Biotechnology: Products and Processes, Springer International Publishing, Cham, Switzerland (2016).
6 N. C. Boelee, H. Temmink, M. Janssen, C. J. N. Buisman, and R. H. Wijffels, Balancing the organic load and light supply in symbiotic microalgal-bacterial biofilm reactors treating synthetic municipal wastewater, Ecol. Eng., 64, 213-221 (2014).   DOI
7 A. L. Goncalves, J. C. M. Pires, and M. Simoes, Wastewater polishing by consortia of Chlorella vulgaris and activated sludge native bacteria, J. Clean. Prod., 133, 348-357 (2016).   DOI
8 E. Daneshvar, M. J. Zarrinmehr, A. M. Hashtjin, O. Farhadian, and A. Bhatnagar, Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption, Bioresour. Technol., 268, 523-530 (2018).   DOI
9 M. Rizwan, G. Mujtaba, S. A. Memon, K. Lee, and N. Rashid, Exploring the potential of microalgae for new biotechnology applications and beyond: A review, Renew. Sust. Energ. Rev., 92, 394-404 (2018).   DOI
10 N. M. Dang, and K. Lee, Utilization of organic liquid fertilizer in microalgae cultivation for biodiesel production, Biotechnol. Bioprocess Eng., 23, 405-414 (2018).   DOI
11 N. Xu, X. Zhang, X. Fan, L. Han, and C. Zeng, Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta), J. Appl. Phycol., 13, 463-469 (2001).   DOI
12 M. J. Griffiths, and S. T. L. Harrison, Lipid productivity as a key characteristic for choosing algal species for biodiesel production, J. Appl. Phycol., 21, 493-507 (2009).   DOI
13 D. Nhat Minh, and L. Kisay, Recycling of lipid-extracted algae cell residue for microorganisms cultivation and bioenergy production, Appl. Chem. Eng., 32, 487-496 (2021).   DOI
14 A. M. Illman, A. H. Scragg, and S. W. Shales, Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme Microb. Technol., 27, 631-635 (2000).   DOI
15 K. A. Jung, S.-R. Lim, Y. Kim, and J. M. Park, Potentials of macroalgae as feedstocks for biorefinery, Bioresour. Technol., 135, 182-190 (2013).   DOI
16 S. Millao and E. Uquiche, Antioxidant activity of supercritical extracts from Nannochloropsis gaditana: Correlation with its content of carotenoids and tocopherols, J. Supercrit. Fluids, 111, 143-150 (2016).   DOI
17 L. Barsanti and P. Gualtieri, Algae: Anatomy, Biochemistry, and Biotechnology, 2nd ed., CRC Press, USA (2014).
18 B. Zhao, and Y. Su, Process effect of microalgal-carbon dioxide fixation and biomass production: A review, Renew. Sust. Energ. Rev., 31, 121-132 (2014).   DOI
19 R. Verma, R. Kumar, L. Mehan, and A. Srivastava, Modified conventional bioreactor for microalgae cultivation, J. Biosci. Bioeng., 125, 224-230 (2018).   DOI
20 M. K. Lam, K. T. Lee, and A. R. Mohamed, Current status and challenges on microalgae-based carbon capture, Int. J. Green. Gas Control, 10, 456-469 (2012).   DOI
21 B. Wang, Y. Li, N. Wu, and C. Q. Lan, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol., 79, 707-718 (2008).   DOI
22 Y. Jiang, W. Zhang, J. Wang, Y. Chen, S. Shen, and T. Liu, Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus, Bioresour. Technol, 128, 359-364 (2013).   DOI
23 R. Verma, and A. Srivastava, Carbon dioxide sequestration and its enhanced utilization by photoautotroph microalgae, Environ. Dev., 27, 95-106 (2018).   DOI
24 W. Y. Cheah, P. L. Show, J.-S. Chang, T. C. Ling, and J. C. Juan, Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae, Bioresour. Technol., 184, 190-201 (2015).   DOI
25 L. Wang, B. Zhong, T. Liang, B. Xing, and Y. Zhu, Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China, Sci. Total Environ., 572, 1-8 (2016).   DOI
26 K. Katam, and D. Bhattacharyya, Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge, J. Ind. Eng. Chem., 69, 295-303 (2019).   DOI
27 G. Mujtaba, M. Rizwan, and K. Lee, Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris, J. Ind. Eng. Chem., 49, 145-151 (2017).   DOI
28 J. Yang, Y. Gou, F. Fang, J. Guo, L. Lu, Y. Zhou, and H. Ma, Potential of wastewater treatment using a concentrated and suspended algal-bacterial consortium in a photo membrane bioreactor, Chem. Eng. J., 335, 154-160 (2018).   DOI
29 C.-C. Tang, W. Zuo, Y. Tian, N. Sun, Z.-W. Wang, and J. Zhang, Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors, Bioresour. Technol, 222, 156-164 (2016).   DOI
30 Y. Shen, J. Gao, and L. Li, Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal, Bioresour. Technol, 243, 905-913 (2017).   DOI
31 T. Suganya, M. Varman, H. H. Masjuki, and S. Renganathan, Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach, Renew. Sust. Energ. Rev., 55, 909-941 (2016).   DOI
32 P. K. Kumar, S. V. Krishna, S. S. Naidu, K. Verma, D. Bhagawan, and V. Himabindu, Biomass production from microalgae Chlorella grown in sewage, kitchen wastewater using industrial CO2 emissions: Comparative study, Carbon Resour. Convers., 2, 126-133 (2019).   DOI
33 I. Duran, F. Rubiera, and C. Pevida, Microalgae: Potential precursors of CO2 adsorbents, J. CO2 Util., 26, 454-464 (2018).   DOI
34 Y. Wang, B. He, Z. Sun, and Y.-F. Chen, Chemically enhanced lipid production from microalgae under low sub-optimal temperature, Algal Res., 16, 20-27 (2016).   DOI
35 G. Najafi, B. Ghobadian, and T. F. Yusaf, Algae as a sustainable energy source for biofuel production in Iran: A case study, Renew. Sust. Energ. Rev., 15, 3870-3876 (2011).   DOI
36 L. T. K. Vu, and K.-C. Loh, Symbiotic hollow fiber membrane photobioreactor for microalgal growth and bacterial wastewater treatment, Bioresour. Technol, 219, 261-269 (2016).   DOI
37 A. Mahdy, L. Mendez, M. Ballesteros, and C. Gonzalez-Fernandez, Algaculture integration in conventional wastewater treatment plants: Anaerobic digestion comparison of primary and secondary sludge with microalgae biomass, Bioresour. Technol., 184, 236-244 (2015).   DOI
38 H. A. Alhashimi, and C. B. Aktas, Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis, Renew. Sust. Energ. Rev., 118, 13-26 (2017).
39 K. Larsdotter, Microalgae for Phosphorus Removal from Wastewater in a Nordic Climate, Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden (2006).
40 M. P. Caporgno, A. Taleb, M. Olkiewicz, J. Font, J. Pruvost, J. Legrand, and C. Bengoa, Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane, Algal Res., 10, 232-239 (2015).   DOI
41 J. Trivedi, M. Aila, D. P. Bangwal, S. Kaul, and M. O. Garg, Algae based biorefinery-How to make sense?, Renew. Sust. Energ. Rev., 47, 295-307 (2015).   DOI
42 R. A. I. Abou-Shanab, M.-K. Ji, H.-C. Kim, K.-J. Paeng, and B.-H. Jeon, Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production, J. Environ. Manage., 115, 257-264 (2013).   DOI
43 M. E. Gershwin, and A. Belay, Spirulina in Human Nutrition and Health, CRC Press, USA (2007).
44 Y. P. Xie, S. H. Ho, C. Y. Chen, C. N. N. Chen, C. C. Liu, I. S. Ng, K. J. Jing, S. C. Yang, C. H. Chen, J. S. Chang, and Y. H. Lu, Simultaneous enhancement of CO2 fixation and lutein production with thermo-tolerant Desmodesmus sp. F51 using a repeated fed-batch cultivation strategy, Biochem. Eng. J., 86, 33-40 (2014).   DOI
45 A. Ajeej, J. V. Thanikal, C. M. Narayanan, and R. Senthil Kumar, An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper, Renew. Sust. Energ. Rev., 50, 270-276 (2015).   DOI
46 H. B. Goyal, D. Seal, and R. C. Saxena, Bio-fuels from thermochemical conversion of renewable resources: A review, Renew. Sust. Energ. Rev., 12, 504-517 (2008).   DOI
47 E. Marris, Black is the new green, Nature, 442, 624-626 (2006).   DOI
48 Y. Li, M. Horsman, N. Wu, C. Q. Lan, and N. Dubois-Calero, Biofuels from Microalgae, Biotechnol. Prog, 24, 815-820 (2008).
49 J. J. Wang, Y. P. Han, J. Y. Chang, and Z. Y. Chen, Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model, J. Quant. Spectrosc. Radiat. Transf., 206, 22-30 (2018).   DOI
50 X. Deng, K. Gao, M. Addy, P. Chen, D. Li, R. Zhang, Q. Lu, Y. Ma, Y. Cheng, Y. Liu, and R. Ruan, Growing Chlorella vulgaris on mixed wastewaters for biodiesel feedstock production and nutrient removal, J. Chem. Technol. Biotechnol., 93, 2748-2757 (2018).   DOI
51 D. L. Cheng, H. H. Ngo, W. S. Guo, S. W. Chang, D. D. Nguyen, and S. M. Kumar, Microalgae biomass from swine wastewater and its conversion to bioenergy, Bioresour. Technol., 275, 109-122 (2019).   DOI
52 A. Kadier, Y. Simayi, P. Abdeshahian, N. F. Azman, K. Chandrasekhar, and M. S. Kalil, A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production, Alex. Eng. J., 55, 427-443 (2016).   DOI
53 G. Mujtaba, and K. Lee, Advanced treatment of wastewater using symbiotic co-culture of microalgae and bacteria, Appl. Chem. Eng., 27, 1-9 (2016).   DOI
54 S. A. Razzak, S. A. M. Ali, M. M. Hossain, and H. deLasa, Biological CO2 fixation with production of microalgae in wastewater - A review, Renew. Sust. Energ. Rev., 76, 379-390 (2017).   DOI
55 J. A. Del Campo, M. Garcia-Gonzalez, and M. G. Guerrero, Outdoor cultivation of microalgae for carotenoid production: current state and perspectives, Appl. Microbiol. Biotechnol., 74, 1163-1174 (2007).   DOI
56 A. Richmond, Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell, UK (2003).
57 J. Han, L. Thomsen, K. Pan, and C. Thomsen, Two-step process: Enhanced strategy for wastewater treatment using microalgae, Bioresour. Technol., 268, 608-615 (2018).   DOI
58 M. Wang, Y. Yang, Z. Chen, Y. Chen, Y. Wen, and B. Chen, Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae, Bioresour. Technol., 222, 130-138 (2016).   DOI
59 L. Zhu, Biorefinery as a promising approach to promote microalgae industry: An innovative framework, Renew. Sust. Energ. Rev., 41, 1376-1384 (2015).   DOI
60 G. Kumar, P. Sivagurunathan, A. Pugazhendhi, N. B. D. Thi, G. Zhen, K. Chandrasekhar, and A. Kadier, A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options, Energy Convers. Manag., 141, 390-402 (2017).   DOI
61 M. Nayak, A. Karemore, and R. Sen, Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application, Algal Res., 16, 216-223 (2016).   DOI
62 G. Kim, J. Bae, and K. Lee, Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp., Bioresour. Technol., 205, 274-279 (2016).   DOI
63 J. E. Keffer, and G. T. Kleinheinz, Use of Chlorella vulgaris for CO(2) mitigation in a photobioreactor, J. Ind. Microbiol. Biotechnol., 29, 275-280 (2002).   DOI
64 M. K. Enamala, S. Enamala, M. Chavali, J. Donepudi, R. Yadavalli, B. Kolapalli, T. V. Aradhyula, J. Velpuri, and C. Kuppam, Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae, Renew. Sust. Energ. Rev., 94, 49-68 (2018).   DOI
65 W. Y. Cheah, T. C. Ling, P. L. Show, J. C. Juan, J.-S. Chang, and D.-J. Lee, Cultivation in wastewaters for energy: A microalgae platform, Appl. Energy, 179, 609-625 (2016).   DOI
66 L. Evans, S. J. Hennige, N. Willoughby, A. J. Adeloye, M. Skroblin, and T. Gutierrez, Effect of organic carbon enrichment on the treatment efficiency of primary settled wastewater by Chlorella vulgaris, Algal Res., 24, 368-377 (2017).   DOI
67 I. Rawat, R. Ranjith Kumar, T. Mutanda, and F. Bux, Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production, Appl. Energy, 88, 3411-3424 (2011).   DOI
68 F. G. Acien, E. Molina, A. Reis, G. Torzillo, G. C. Zittelli, C. Sepulveda, and J. Masojidek, 1 - Photobioreactors for the production of microalgae, In: C. Gonzalez-Fernandez and R. Munoz (eds.). Microalgae-Based Biofuels and Bioproducts, 1-44, Woodhead Publishing, UK (2017).
69 N. M. Dang, G. Kim, and K. Lee, Mixotrophic cultivation of marine alga Tetraselmis sp. using glycerol and its effects on the characteristics of produced biodiesel, Appl. Chem. Eng., 33, 222-228 (2022).
70 F. M. Santos, and J. C. M. Pires, Nutrient recovery from wastewaters by microalgae and its potential application as bio-char, Bioresour. Technol., 267, 725-731 (2018).   DOI
71 C.-M. Kuo, T.-Y. Chen, T.-H. Lin, C.-Y. Kao, J.-T. Lai, J.-S. Chang, and C.-S. Lin, Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production, Bioresour. Technol., 194, 326-333 (2015).   DOI
72 H. Wang, H. Xiong, Z. Hui, and X. Zeng, Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids, Bioresour. Technol., 104, 215-220 (2012).   DOI
73 K. Li, Q. Liu, F. Fang, R. Luo, Q. Lu, W. Zhou, S. Huo, P. Cheng, J. Liu, M. Addy, P. Chen, D. Chen, and R. Ruan, Microalgae-based wastewater treatment for nutrients recovery: A review, Bioresour. Technol., 291, 121934 (2019).   DOI
74 A. Otondo, B. Kokabian, S. Stuart-Dahl, and V. G. Gude, Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris, J. Environ. Chem. Eng., 6, 3213-3222 (2018).   DOI
75 M. A. Islam, K. Heimann, and R. J. Brown, Microalgae biodiesel: Current status and future needs for engine performance and emissions, Renew. Sust. Energ. Rev., 79, 1160-1170 (2017).   DOI
76 G. Mujtaba, M. Rizwan, G. Kim, and K. Lee, Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris, Chem. Eng. J., 343, 155-162 (2018).   DOI
77 Y. Wang, W. Guo, H.-W. Yen, S.-H. Ho, Y.-C. Lo, C.-L. Cheng, N. Ren, and J.-S. Chang, Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production, Bioresour. Technol., 198, 619-625 (2015).   DOI
78 L. Zhu, Z. Wang, Q. Shu, J. Takala, E. Hiltunen, P. Feng, and Z. Yuan, Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment, Water Res., 47, 4294-4302 (2013).   DOI
79 H. Amini, L. Wang, and A. Shahbazi, Effects of harvesting cell density, medium depth and environmental factors on biomass and lipid productivities of Chlorella vulgaris grown in swine wastewater, Chem. Eng. Sci., 152, 403-412 (2016).   DOI
80 A. F. Mohd Udaiyappan, H. Abu Hasan, M. S. Takriff, and S. R. Sheikh Abdullah, A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment, J. Water Process. Eng., 20, 8-21 (2017).   DOI
81 M. S. Madeira, C. Cardoso, P. A. Lopes, D. Coelho, C. Afonso, N. M. Bandarra, and J. A. M. Prates, Microalgae as feed ingredients for livestock production and meat quality: A review, Livest. Sci., 205, 111-121 (2017).   DOI
82 F. Guiheneuf, and D. B. Stengel, Towards the biorefinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum, Algal Res., 10, 152-163 (2015).   DOI
83 Z. Yaakob, E. Ali, A. Zainal, M. Mohamad, and M. S. Takriff, An overview: biomolecules from microalgae for animal feed and aquaculture, J. Biol. Res., 21, 6-6 (2014).   DOI
84 K. L. Yu, B. F. Lau, P. L. Show, H. C. Ong, T. C. Ling, W.-H. Chen, E. P. Ng, and J.-S. Chang, Recent developments on algal biochar production and characterization, Bioresour. Technol, 246, 2-11 (2017).   DOI
85 N. S. Shifrin, and S. W. Chisholm, Phytoplankton lipids: Interspecific differences and effects of nitrate, silicate and light-dark cycles, J. Phycol., 17, 374-384 (1981).   DOI